CHENG Peng,FAN Xu,HU Xiaohui,et al.Analysis of Water Vapor and Liquid Water Variation Characteristics in Zhangye Area with Microwave Radiometer Data[J].Journal of Chengdu University of Information Technology,2021,36(02):230-237.[doi:10.16836/j.cnki.jcuit.2021.02.016]
基于微波辐射计的张掖地区水汽、液态水变化特征分析
- Title:
- Analysis of Water Vapor and Liquid Water Variation Characteristics in Zhangye Area with Microwave Radiometer Data
- 文章编号:
- 2096-1618(2021)02-0230-08
- Keywords:
- atmospheric physics and atmospheric environment; atmospheric detection; integrated water vapor; liquid water path; microwave radiometer
- 分类号:
- P407.7
- 文献标志码:
- A
- 摘要:
- 针对张掖地区大气水汽变化特征和分布规律,利用张掖国家气候观象台地基微波辐射计反演数据对大气水汽总量(IWV)和液态水含量(LWP)的变化特征进行分析,并利用探空资料进行检验。结果表明:微波辐射计的反演数据可用性较好,通过了0.05的信度检验,夜间反演效果好于白天。张掖地区IWV和LWP的最大值分别出现于7月和4月,分别为2.34 cm和0.84 mm; IWV的日变化“双峰型”特征明显,主峰在17:00,次峰在03:00,LWP的日变化存在4个峰值,但峰值间数值接近; IWV和LWP的季节日变化均差异明显,IWV季节日平均值夏季(2.242 cm)>春季(0.975 cm)>秋季(0.893 cm)>冬季(0.320 cm); LWP主要集中于0.6~1.2 km高度,最大值出现在0.9 km(0.042 mm)。晴空条件下,张掖市观象台所在地区水汽来源以太阳加热地表导致的局地蒸发为主。降水和IWV及LWP的变化相关,当IWV和LWP明显增大时降水明显增强,IWV高值出现时间较降水高值提前1小时。
- Abstract:
- In order to study the variation characteristics and distribution law of atmospheric water vapor in Zhangye based on the data observed by microwave radiometer in the national station of Zhangye observatory,the variation characteristics of integrated water vapor and liquid water path of Zhangye region are analyzed,the test is carried out by using the sounding data.The results showed that the inversion data of microwave radiometer is available and it has passed the reliability test of 0.05,the night inversion effect is better than the day.The maximum value of integrated water vapor and liquid water path in Zhangye region appeared in July and April respectively,which is 2.34 cm and 0.84 mm; the diurnal variation of Integrated water vapor appeared typical double peaks pattern,the major and minor peaks occurred at about 17:00 BST and 03:00 BST separately,there were four peaks in the daily variation of liquid water path,but the values between these peaks were close to each other.The seasonal diurnal variation of Integrated water vapor and liquid water path were significantly different, the order of the seasonal daily average of the Integrated water vapor was summer(2.242 cm)> spring(0.975 cm)> autumn(0.893 cm)> winter(0.320 cm). The liquid water path were mainly concentrated in the height range of 0.6 to 1.2 km,the maximum was 0.042 g/m3 at 0.9 km height. The Integrated water vapor in cloudless day in Zhangye region mainly came from local evaporation which caused by the heating of the earth by the sun. When the integrated water vapor and liquid water path increase significantly,the precipitation increases significantly.The occurrence time of the integrated water vapor high value was about one hour ahead of the precipitation high value.
参考文献/References:
[1] 陆桂华,何海.全球水循环研究进展[J].水科学进展,2006,17(3):419-424.
[2] 张强,赵映东,张存杰,等.西北干旱区水循环与水资源问题[J].干旱气象,2008,26(2):1-8.
[3] 张良,王式功,尚可政,等.中国人工增雨研究进展[J].干旱气象,2006,24(4):73-81.
[4] 陈超,郭晓军,邱晓斌,等.中国华北地区云垂直结构及云水含量卫星遥感研究[J].气象与环境学报,2015,31(5):159-164.
[5] 谢松元,杨扬,杨军.辽宁层状云微物理结构的水平变化特征[J].气象与环境学报,2008,24(1):5-8.
[6] 刘红燕.三年地基微波辐射计观测温度廓线的精度分析[J].气象学报,2011,69(4):719-728.
[7] 杨大生,王普才.中国地区夏季6-8月云水含量的垂直分布特征[J].大气科学,2012,36(1):89-101.
[8] 刘亚亚,毛节泰,刘钧,等.地基微波辐射计遥感大气廓线的BP神经网络反演方法研究[J].高原气象,2010,29(6):1514-1523.
[9] 樊旭,毛文茜,吴肖燕,等.基于伪逆学习算法的地基微波辐射计反演算法研究[J].西南大学学报(自然科学版),2019,41(1):114-122.
[10] 赵伯林,尹宏,李慧心,等.微波遥感大气层结的原理和实验[J].中国科学,1981,39(2):217-225.
[11] 张秋晨,龚佃利,王俊,等.基于地基微波辐射计反演的济南地区水汽及云液态水特征[J].气象与环境学报,2017,33(5):35-43.
[12] 姚俊强,杨青,韩雪云,等.乌鲁木齐夏季水汽日变化及其与降水的关系[C].全国云降水与人工影响天气科学会议,2014.
[13] 李军霞,李培仁,晋立军,等.地基微波辐射计在遥测大气水汽特征及降水分析中的应用[J].干旱气象,2017,35(5):61-69.
[14] 孙旭映,李耀辉,邓祖琴.一次层状云降水过程云中液态水含量的演变特征[J].干旱区资源与环境,2013,27(10):81-86.
[15] Wang Z Z,Liu D,Xie C B,et al.Long-term ground-based microwave radiometric measurements of atmospheric brightness temperature in SKYNET Hefei(31.90 N,117.17E)site[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2017,188:181-187.
[16] 刘红燕,王迎春,王京丽,等.由地基微波辐射计测量得到的北京地区水汽特性的初步分析[J].大气科学,2009,33(2):388-396.
[17] 敖雪,王振会,徐桂荣,等.地基微波辐射计资料在降水分析中的应用[J].暴雨灾害,2011,30(4):358-365.
[18] 田磊,孙艳桥,胡文东,等.银川地区大气水汽、云液态水含量特性的初步分析[J].高原气象,2013,32(6):1774-1779.
[19] Xu W J,Liu H Y.Ground-Based Microwave Radiometer Profiler Observations before a Heavy Rainfall[J].Applied Mechanics and Materials,2012,1513:312-315.
[20] 王黎俊,孙安平,刘彩红,等.地基微波辐射计探测在黄河上游人工增雨中的应用[J].气象,2007,33(11):28-33.
[21] 王毅荣,林纾,李耀辉,等.甘肃空中水汽含量对全球气候变化响应[J].干旱区地理,2006,29(1):47-52.
[22] 王秀荣,徐祥德,苗秋菊.西北地区夏季降水与大气水汽含量状况区域性特征[J].气候与环境研究,2003,8(1):35-42.
[23] 张强,张杰,孙国武,等.祁连山山区空中水汽分布特征研究[J].气象学报,2007,65(4):633-643.
相似文献/References:
[1]冯婉悦,佘 勇,姚振东.非球形降水粒子测量模型的初步研究[J].成都信息工程大学学报,2016,(02):136.
FENG Wan-yue,SHE Yong,YAO Zhen-dong.A Preliminary Study on the Measurement Model of
Non-spherical Precipitation Particles[J].Journal of Chengdu University of Information Technology,2016,(02):136.
备注/Memo
收稿日期:2020-04-01
基金项目:中国气象局云雾物理环境重点开放实验室开放课题资助项目(2018Z01603);西北区域人工影响天气能力建设项目研究试验资助项目(ZQC-R18208);甘肃省气象局科研资助项目(Ms2019-19)