WANG Yuan,LIU Kun,DU Yuming,et al.Investigation at the Influence of First and Subsequent Return Stroke to Lightning Electromagnetic Coupling Effects of Microstrip Antenna Working on GSM[J].Journal of Chengdu University of Information Technology,2021,36(04):355-360.[doi:10.16836/j.cnki.jcuit.2021.04.001]
首次和继后回击对GSM频段微带天线雷电电磁耦合效应的影响研究
- Title:
- Investigation at the Influence of First and Subsequent Return Stroke to Lightning Electromagnetic Coupling Effects of Microstrip Antenna Working on GSM
- 文章编号:
- 2096-1618(2021)04-0355-06
- Keywords:
- microstrip antenna; lightning coupling effect; first return stroke; subsequent return stroke
- 分类号:
- TN822+.4
- 文献标志码:
- A
- 摘要:
- 为研究基站通信塔遭受雷击时,通信塔上890~954 MHz频段微带天线在不同雷击下的雷电电磁耦合效应,基于闪电回击电磁模型,建立闪电通道-通信铁塔-大地模型及天线模型,研究首次回击和继后回击对890~954 MHz频段微带天线雷击耦合效应的影响。结果表明:虽然首次回击的总能量远远大于继后回击,但继后回击比首次回击携带更多的高频能量,对于安装在通信塔上、同时可能处于闪电通道附近的890~954 MHz频段的微带天线而言,继后回击对其雷电耦合效应的影响更大,继后回击耦合入微带天线的能量远远大于首次回击。
- Abstract:
- The lightning electromagnetic coupling effect of the microstrip antenna working on 890-954 MHz is researched under different lightning strokes, when the base station communication tower is struck by lightning.In this paper, based on the lightning return stroke electromagnetic model, the lightning channel-communication tower-ground model and antenna model are established, and the impact of the first and subsequent return strokes to the lightning electromagnetic coupling effect of the microstrip antenna working on 890-954 MHz is studied.It can be found that, although the total energy of the first return stroke is much greater than that of the subsequent return stroke, the subsequent return stroke carry more high-frequency energy than the first return stroke. For the microstrip antenna working on 890-954 MHz,which is installed on communication towers and may be near the lightning channel, as mentioned in this article, its lightning coupling effect will be more affected by subsequent return stroke, The coupling energy of the microstrip antenna from the subsequent return stroke is much greater than that from the first return stroke.
参考文献/References:
[1] Takami J,Okabe S.Observational results of lightning current on transmission towers[J].IEEE Transactions on Power Dellvery,2007,22(1):547-556.
[2] Liu K,Li S.Analysis and Investigation on Lightning Electromagnetic Coupling Effects of Dipole Antenna for Wireless Base Station[J].IEEE Transactions on Electromagnetic Compatibility,2018,60(6):1842-1849.
[3] Sun X,Wang Q,Zhou X,et al.Response Characteristics of Dipole Antenna Exposed to Nuclear Electromagnetic Pulse[J].Journal of Microwaves,2014,30(6):51-54.
[4] Sebastiani S.Protecting VHF antennas from EMP[C].International Symposium on Electromagnetic Compatibility.IEEE,1991:297-303.
[5] Qin H.Coupling characteristic study of airborne communication antenna under LEMP effect [C].International Symposium on Antennas Propagation and EM Theory.IEEE,2010:19-22.
[6] Ankara A C.The Effects of Lightning Discharges on Control &Communication Cables and Antenna Systems[C].International Power Modulator and High Voltage Conference.IEEE,2016:588-593.
[7] E L Holzman,A Svitak.Analytical Procedure for Determining the Response of an Antenna Array toan Indirect Lightning Discharge[C].IEEE International Symposium on Phased Array System & Technology,2020.
[8] J Wang,S Xie,H.Guo.Study ofIndirect Lightning Effects on an AirborneUltra Shortwave Antenna[C].International Symposium on Antennas and Propagation,pp.2012:724-728.
[9] D Darwanto,D Hamdani.EMC-based Skin-Effect Grounding for Reliable Lightning Protection System of Antenna System[C].Proceedings of the 2011 International Conference on Electrical Engineering and Informatics,2011.
[10] Shoory A,Moini R.Analysis of lightning-radiated electromagnetic fields in the vicinity oflossy ground [J].IEEE Transactions on Electromagnetic Compatibility,2012,47(1):315-388.
[11] Martin A,Uman.The electromagnetic radiation from a finite antenna[J].Journal of Physics,1975,43(1):33-38.
[12] Moini R.An antenna theory model for the lightning return stroke[C].12th International Zurich Symposium Electromagnetic Compatibility,Zurich,Switzerland,1997: 149-152.
[13] Yao C.Finite difference time domain simulation of lightning transient electromagnetic fields on transmission lines [J] IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1239-1246.
[14] Yao C.Study of magnetic fields from different types of lightning faults on a multi-tower system [J].IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(4):1866-1874.
[15] Zhang Q,Chen Y,Hou W.Lightning-induced voltages caused by lighting strike to tall Objects considering the effect of frequency dependent soil[J].Journal of Atmospheric and Solar-Terrestrial Physics,2015,133:145-156.
[16] Zhang Q.3-D FDTD simulation of the lightning-induced waves on overhead lines considering the vertically stratified ground [J] IEEE Transactions on Electromagnetic Compatibility,2015,57(5):1112-1122.
[17] Moini R,Kordi B.A new lighting return stroke model based on antenna theory[J].Journal of Geophysical Research,2000,105(4):29693-29702.
[18] F Heidler.Traveling current soure more for LEMP calculation[C].proc.6th Int.zurich symp.Electromagn compat,1985:157-162.
[19] 张宁,俱新德,任辉.天线的馈电技术[M].西安:西安电子科技大学出版社,2016.
相似文献/References:
[1]张润林,唐 涛,汪江宇.地板作为反射器的频率重构阵列天线设计[J].成都信息工程大学学报,2018,(03):232.[doi:10.16836/j.cnki.jcuit.2018.03.002]
ZHANG Run-lin,TANG Tao,WANG Jiang-yu.Design of Frequency Reconfigurable ArrayAntenna with a Floor Reflector[J].Journal of Chengdu University of Information Technology,2018,(04):232.[doi:10.16836/j.cnki.jcuit.2018.03.002]
[2]倪鹏程,刘 昆,杜雨洺,等.闪电对n79频段5G微带天线的电磁耦合效应研究[J].成都信息工程大学学报,2022,37(03):270.[doi:10.16836/j.cnki.jcuit.2022.03.006]
NI Pengcheng,LIU Kun,DU Yuming,et al.Investigation at Lightning Electromagnetic Coupling Effects of 5G Microstrip Antenna Working on n79 Band[J].Journal of Chengdu University of Information Technology,2022,37(04):270.[doi:10.16836/j.cnki.jcuit.2022.03.006]
备注/Memo
收稿日期:2021-05-12
基金项目:四川省重点研发计划资助项目(2019YFG0104); 四川省科技计划资助项目(2021YFG0355)