FAN Sirui,WANG Weijia,LIU Guihua,et al.Retrieval of Microphysical Properties of Summer Cloud Precipitation in Sichuan Basin based on NPP Satellitedata[J].Journal of Chengdu University of Information Technology,2021,36(04):467-471.[doi:10.16836/j.cnki.jcuit.2021.04.017]
基于NPP卫星反演四川盆地夏季云降水微物理特征
- Title:
- Retrieval of Microphysical Properties of Summer Cloud Precipitation in Sichuan Basin based on NPP Satellitedata
- 文章编号:
- 2096-1618(2021)04-0467-05
- Keywords:
- atmospheric physics; clouds and precipitation; NPP satellite retrieval; cloud microphysical retrieval; Sichuan basin; super-cooled liquid cloud
- 分类号:
- P421.1
- 文献标志码:
- A
- 摘要:
- 为研究四川盆地夏季云降水宏、微观特征以及内部降水机制,利用NPP卫星资料反演四川盆地云降水微物理特征参数,对比分析四川盆地夏季午后强降水云和非降水云的宏、微物理结构。结果表明,通过NPP/VIIRS卫星资料反演可以清晰看到四川盆地夏季午后云发展状况,了解云降水微物理特征。四川盆地夏季午后生成过冷水云、对流云、层积云和卷云等多种类型云,其中过冷水云云顶温度在-5 ℃~-10 ℃,粒子有效半径Re为7~15 μm,粒子小且均匀; 对流云云顶温度在-30 ℃~-37 ℃,Re为15~40 μm,粒子分布不均,主要发生混合相增长和冰化增长,约在-10 ℃以上为冰化增长带; 层积云云顶温度为-10 ℃~-15 ℃,Re为10~20 μm; 卷云稀薄,云顶温度为-30 ℃,云底温度为-23 ℃,Re为10~15 μm。四川盆地能否产生强降水主要取决于高低云配置情况和过冷水云面积,当高低云配置不好时,同时对流云下没有大面积过冷水云供应水汽,或者低云中的大滴不足,会造成地面降水较小或者无降水; 当高云主要是从中低云发展而来时,过冷水云成片分布说明此区域过冷水丰富,为粒子发展成雨滴提供有利条件。
- Abstract:
- For studying the macro and micro characteristics of cloud precipitation in summer in the Sichuan Basin and the internal precipitation mechanism, the NPP satellite data was used to retrieve the microphysical characteristics of cloud precipitation in the Sichuan Basin, and the macro and microphysical characteristics of heavy and non-precipitation clouds in the summer afternoon in the Sichuan Basin were compared structure. The results show that the NPP/VIIRS satellite can clearly see development condition of summer afternoon clouds in the Sichuan Basin,which can understand cloud microphysical properties. Various types of clouds such as supercooled water clouds, convective clouds, stratocumulus clouds and cirrus clouds are generated in the Sichuan Basin in the summer afternoon. The temperature of the supercooled water cloud top is -5 ℃--10 ℃, the particle radius Re is 7-15 μm, and the particles are small and uniform; the temperature of the cloud top of the convective cloud is -30 ℃--37 ℃, the particle radius Re is 15-40 μm, the particle distribution is uneven, and the mixed phase growth and glacial growth mainly occur. Above about -10 ℃, the glacial growth zone; stratification The cloud top temperature is -10 ℃--15 ℃, the particle effective radius Re is 10-20 μm; the cirrus cloud is thin, the cloud top temperature is -30 ℃, the cloud bottom temperature is -23 ℃, and the particle Re is 10-15 μm.Whether the Sichuan Basin can produce heavy precipitation mainly depends on the configuration of high and low clouds and the area of supercooled water clouds. When the configuration of high and low clouds is not good, there is no large area of supercooled water clouds under convective clouds to supply water vapor, or there are insufficient large droplets in low clouds, which will cause little or no precipitation on the ground.When high clouds are mainly developed from middle and low clouds, the distribution of supercooled water clouds in patches indicates that the area is rich in supercooled water, which provides favorable conditions for particles to develop into raindrops.
参考文献/References:
[1] 范思睿,王维佳.四川盆地云和降水观测科学试验设计与实践[J].气象科技,2019,47(2):191-200.
[2] Liu Liping,Zhang Zhiqiang,Yu Danru,et al.Comparison of precipitation observations between principle prototype space-based cloud radar and ground-based radars[J].Adv.Atmos.Sci.,2012,29(6):1318-1329.
[3] 刘黎平,宗蓉,齐彦斌,等.云雷达反演层状云微物理参数及其与飞机观测数据的对比[J].中国工程科学,2012,14(9):64-71.
[4] 吴举秀,魏鸣,周杰.94 GHz 云雷达回波及测云能力分析[J].气象学报,2014,72(2):402-416.
[5] 吴翀,刘黎平,翟晓春.Ka波段固态发射机体制云雷达和激光云高仪探测青藏高原夏季云底能力和效果对比分析[J].大气科学,2017,41(4):659-672.
[6] 蔡淼,欧建军,周毓荃,等.L波段探空判别云区方法的研究[J].大气科学,2014,38(2):213-222.
[7] 亓鹏,郭学良,卢广献,等.华北太行山东麓一次稳定性积层混合云飞机观测研究:对流云/对流泡和融化层结构特征征[J].大气科学,2019,43(6):1365-1384.
[8] 张佃国,郭学良,付丹红,等.2003年8-9月北京及周边地区云系微物理飞机探测研究[J].大气科学,2007,31:597-610.
[9] 刘贵华,余兴,贾玲,等.2009年陕西春季层状云增雨卫星观测分析[J].干旱区研究,2011,28(4):699-704.
[10] 叶晶,李万彪,严卫.利用MODIS数据反演多层云光学厚度和有效粒子半径[J].气象学报,2009,67(4):613-622.
[11] 汪会,郭学良.青藏高原那曲地区一次深对流云垂直结构多源卫星和地基雷达观测对比分析[J].气象学报,2018,76(6):996-1012.
[12] 刘建军,陈葆德.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象,2017,36(3):632-642.
[13] 孙鸿娉,李培仁,申东东,等.夏季积层混合云降水的云特征参数演变及人工增雨可播性研究[J].中国农学通报,2017,33(3):126-134.
[14] 范思睿,王维佳.利用FY-4A卫星反演产品对飞机增雨作业的分析[J].高原山地气象研究,2018,38(4):60-66.
[15] 范思睿,王维佳.一次增雨作业的FY-4A卫星反演分析[J].高原山地气象研究,2020,40(1):41-48.
[16] Miller S D,Hawkins J D,Kent J,et al.NexSat:Previewing NPOESS /VIIRS Imagery Capabilities[J].Bulletin of the American Meteorological Society,2006,7(4):433-446.
[17] 岳治国,余兴,刘贵华,等.NPP/VIIRS卫星反演青藏高原夏季对流云微物理特征[J].气象学报,2018,76(6):968-982.
[18] 周敏强,王云龙,梁慧,等.青藏高原Soumi-NPP和MODIS积雪范围产品的对比分析[J].冰川冻土,2019,41(1):36-44.
[19] 苏城林,苏林,陈良富,等.NPPVIIRS数据反演气溶胶光学厚度[J].遥感学报,2015,19(6):977-982.
[20] Rosenfeld D,Lensky I M.Spaceborne sensed insights into precipitation formation processes in continental and maritime cloud[J].Bull Amer Meteor Soc,1998,79(11):2457-2476.
[21] Lensky I M,Rosenfeld D.The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius[J].AtmosChemphys,2006,6(10):2887-2894.
[22] Freud E,Rosenfeld D,Andreae M O,et al.Robust relations between CCN and the vertical evlution of cloud drop size distribution in deep convective clouds[J].AtmosChemPhys,2008,8(6):1661-1675.
[23] 刘贵华,余兴,戴进.不同积云云微物理特征的卫星反演分析[J].南京信息工程大学学报,2009,32(1):101-107.
[24] 刘贵华,余兴,贾玲,等.2009年陕西春季层状云增雨卫星观测分析[J].干旱区研究,2011,28(4):699-704.
[25] 洪延超,周非非.层状云系人工增雨潜力评估研究[J].大气科学,2006,30(5):913-926.
相似文献/References:
[1]尹舒悦,周筠珺,高志博,等.成都积雨云形成的层结条件分析[J].成都信息工程大学学报,2019,(02):149.[doi:10.16836/j.cnki.jcuit.2019.02.009]
YIN Shuyue,ZHOU Yunjun,GAO Zhibo,et al.Analysis of Stratification Conditions for Formation of
Cumulonimbus Clouds in Chengdu[J].Journal of Chengdu University of Information Technology,2019,(04):149.[doi:10.16836/j.cnki.jcuit.2019.02.009]
[2]张 瑜,曾胜兰,李肇洁,等.创新科技城对局地气候舒适性影响的数值试验[J].成都信息工程大学学报,2019,(06):640.[doi:10.16836/j.cnki.jcuit.2019.06.013]
ZHANG Yu,ZENG Shenglan,LI Zhaojie,et al.Numerical Experiments on the Impact of Innovation and Technology City on Regional Climate Comfort[J].Journal of Chengdu University of Information Technology,2019,(04):640.[doi:10.16836/j.cnki.jcuit.2019.06.013]
[3]张 元,范思睿,刘晓璐,等.四川盆地冬季一次层状云消散期云微物理特征的飞机探测分析[J].成都信息工程大学学报,2023,38(05):589.[doi:10.16836/j.cnki.jcuit.2023.05.014]
ZHANG Yuan,FAN Sirui,LIU Xiaolu,et al.Cloud Microphysical Characteristics Detection and Analysis based on Aircraft Observations during a Winter Stratiform Cloud Dispersal Period in the Sichuan Basin[J].Journal of Chengdu University of Information Technology,2023,38(04):589.[doi:10.16836/j.cnki.jcuit.2023.05.014]
[4]林 丹,王维佳.四川盆地初夏一次飞机增雨作业的效果检验[J].成都信息工程大学学报,2020,35(01):117.[doi:10.16836/j.cnki.jcuit.2020.01.016]
LIN Dan,WANG Weijia.On Effect Assessment of an Airborne Cloud Seeding Operationin Early Summer in Sichuan Basin[J].Journal of Chengdu University of Information Technology,2020,35(04):117.[doi:10.16836/j.cnki.jcuit.2020.01.016]
备注/Memo
收稿日期:2020-06-03
基金项目:四川省科技计划资助项目(2019YJ0621); 中国气象局云雾物理环境重点开放实验室开放课题资助项目(2019Z01602); 高原与盆地暴雨旱涝灾害四川省重点实验室科技发展基金资助项目(SCQXKJQN2019025、2018-青年-19、2017-青年-15); 中国气象局大气探测重点开放实验室开放课题资助项目(2021KLAS04M)