FU Jiangyun,WANG Wei,Hu Jiajie.Analysis of Persistent Heavy Rainfall Process in Jianghuai Region in 2020 Summer[J].Journal of Chengdu University of Information Technology,2021,36(05):523-531.[doi:10.16836/j.cnki.jcuit.2021.05.009]
2020年江淮地区夏季持续性强降水过程分析
- Title:
- Analysis of Persistent Heavy Rainfall Process in Jianghuai Region in 2020 Summer
- 文章编号:
- 2096-1618(2021)05-0523-09
- Keywords:
- meteorology; climate and climate change; Jianghuai; persistent heavy precipitation; water vapor transport; western pacific subtropical high; South Asia high; Jet
- 分类号:
- P458.121
- 文献标志码:
- A
- 摘要:
- 2020年夏季,中国江淮流域发生持续性强降水,为研究持续性强降水的发生机理,采用美国国家环境预报中心(NCEP/NCAR)提供的逐日再分析资料以及1981-2010年平均的逐日再分析资料,对这次江淮强降水的降水过程和环流形势进行分析。结果表明:(1)本次持续性降水可以分为三个阶段。第一阶段6月18-24日,雨带分布上呈现带状,表现为无降水中心或多降水中心的特征,最大累计降水量为268 mm,位于安徽六安; 第二阶段6月26-30日,雨带呈现分散的两条带状分布,最大累计降水量为220.7 mm,位于浙江衢州; 第三阶段7月2-8日,雨带呈现纺锤形,最大累积降水量达到了606.8 mm,降水强度强于前两阶段,位于安徽六安。(2)冷空气来自东北路径。第一阶段江淮地区上空被暖气团控制不受冷空气影响,第二阶段和第三阶段冷空气均来自东西伯利亚低槽,且第三阶段冷空气更强。(3)南亚高压的强度上,三个阶段分别为强弱强,与西南水汽输送强度相对应。西太副高在第一阶段强度较弱,范围较大; 在第二阶段强度较强,范围较小; 第三阶段副高强度和范围都较大。南海的水汽输送强弱主要受副高强度控制。因此,受南亚高压和副高影响的不同,三个阶段来自孟加拉湾的西南水汽输送为强、弱、强; 来自南海的水汽输送为弱、强、强,第三阶段水汽最为充沛。(4)第一阶段,日本南部低空急流较弱、存在索马里低空急流,高空急流在东北亚有中断; 第二阶段,日本南部低空急流较强、无索马里急流,高空急流连续; 第三阶段,日本南部低空急流较强、索马里急流较强,高空急流连续且在东北亚下凹。各阶段高低空急流配置与水汽和冷空气的输送情况相一致,对此次持续性强降水的发生发展起到推动作用。
- Abstract:
- In the summer of 2020, persistent heavy rainfall occurred in the Yangtze Huaihe River Basin in China. In order to study the mechanism of the persistent heavy rainfall, the daily reanalysis data and average daily reanalysis data from 1981 to 2010 provided by the National Environmental Prediction Center(NCEP / NCAR)were used to analyze the precipitation process and circulation situation of the heavy rainfall in the Yangtze Huaihe River Basin. The results show:(1)the persistent rainfall can be divided into three stages: The first stage is from June 18 to June 24, the distribution of rain belt is zonal, and it is characterized by no precipitation center or multi precipitation center. And the maximum accumulated precipitation is 268 mm, which occurred in Liuan, Anhui Province. The second stage is from June 26to June 30, the rain belt is distributed in two belts, and the maximum accumulated precipitation is 220.7 mm, which occurred in Quzhou, Zhejiang Province. The third stage is from July 2 to July 8, rain belt is spindle shaped, the maximum accumulated precipitation is 606.8 mm, and which is larger than the first and second stages. The maximum precipitation area is occurred in Liuan, Anhui Province.(2)The cold air come from the Northeast path. In the first stage, the upper part of Jianghuai area is controlled by warm air mass, and is not affected by cold air; The cold air in the second and third stages come from the East Siberian trough, and the cold air in the third stage was stronger than that in the first two stages.(3)In terms of the intensity of the South Asia high, the three stages are strong, weak and strong. It corresponds to the southwest water vapor transport intensity. In the first stage, the intensity of the West Pacific subtropical high is weak and the range is large; in the second stage, the intensity is strong and the range is small; in the third stage, the intensity and range of the Western Pacific subtropical high are large. The Western Pacific subtropical high, in the first stage, which is weak in intensity and large in scope; in the second stage, which is strong in intensity and small in scope; in the third stage, the intensity and range of the Western Pacific subtropical high are large. The water vapor transport in the South China Sea is mainly controlled by the Western Pacific subtropical high. Therefore, the influence of South Asia high and the Western Pacific subtropical high is different. In terms of the southwest water vapor transport from the Bay of Bengal, the three stages are strong, weak and strong. In terms of the southwest water vapor transport from the South China Sea, the three stages are weak, strong and strong. In the third stage, the water vapor condition is better than the first two stages.(4)In the first stage, the low-level jet in southern Japan is weak. Low-level jet found in Somalia and the Upper jet is interrupted in Northeast Asia. In the second stage, the low-level jet in southern Japan is strong, low-level jet was not found in Somalia, and the Upper jet is continuous. In the third stage, the low-level jet in southern Japan is strong, and the Somali jet is strong, and the Upper jet is continuous and concave in Northeast Asia. In each stage, the configuration of high and low level flow is consistent with the transportation of water vapor and cold air, which promotes the occurrence and development of the persistent heavy rainfall.
参考文献/References:
[1] 王小玲,丁一汇,张庆云.中国东部夏季持续强降水发生的主要环流模态和水汽输送研究[J].气候与环境研究,2017,22(2):221-230.
[2] 方欢,原韦华,徐幼平.长江中下游地区夏季强降水前期的三维环流结构特征分析[J].大气科学,2020,44(4):761-775.
[3] Li,Xinyu Lu,Riyu.Subseasonal Change in the Seesaw Pattern of Precipitation between the Yangtze River Basin and the Tropical Western North Pacific during Summer[J].Advances in Atmospheric Sciences,2018,35(10):1231-1242.
[4] 罗亚丽,孙继松,李英,等.中国暴雨的科学与预报:改革开放40年研究成果[J].气象学报,2020,78(3):419-450.
[5] 王伟,李建平,丁瑞强.时-空二维波传播分解方法及其在季节内振荡分析中的应用[J].气象学报,2011,69(4):555-569.
[6] 丁一汇.高等天气学[M].2版,北京:气象出版社,2005:138-150.
[7] 张丽霞,周天军.夏季亚洲对流层中上层温度年际变率的预测水平评估及其在我国东部降水预测中的应用[J].大气科学,2020,44(1):150-167.
[8] Xinyu LI,Riyu LU.Seesaw Pattern of Rainfall Anomalies between the Tropical Western North Pacific and Central Southern China during Late Summer[J].Advances in Atmospheric Sciences,2019,36(3):261-270.
[9] 况雪源,张耀存.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象,2006,25(3):382-389.
[10] 张梦珂,金大超.2015年夏季东亚和南亚降水异常与热带太平洋海温异常的联系及机理[J].大气科学学报,2019,42(5):745-754.
[11] 刘芸芸,丁一汇.西北太平洋夏季风对中国长江流域夏季降水的影响[J].大气科学,2009,33(6):1225-1237.
[12] 任晓玥,王伟,周可.1979-2017年江淮梅雨降水变化及一次典型事件特征分析[J].成都信息工程大学学报,2019,24(6):632-639.
[13] 吴晶璐,惠品宏,刘建勇,等,江淮流域极端降水时空变化特征:站点观测和再分析的对比[J].大气科学学报,2019,42(2):207-220.
[14] 龚敬瑜,王谦谦.江淮梅雨期降水不同尺度异常与SSTA的关系[J].南京气象学院学报,2006,29(5):656-661.
[15] 赵勇,钱永甫.青藏高原地表热力异常与我国江淮地区夏季降水的关系[J].大气科学,2007,31(1):145-154.
[16] 陶丽,于国强,王学兵.PJ遥相关型对长江中下游夏季降水影响的不对称性[J].大气科学学报,2020,43(2):299-309.
[17] 鲍名.近50年我国持续性暴雨的统计分析及其大尺度环流背景[J].大气科学,2007,31(5):779-792.
[18] 王晓春,吴国雄.中国夏季降水异常空间模与副热带高压的关系[J].大气科学,1997,21(2):34-42.
[19] 周可,王伟,任晓玥.2010年夏季长江中下游持续性异常降水低频特征分析[J].成都信息工程大学学报,2018,33(4):448-455.
[20] 郭品文,沈沉,董丽娜,等.亚洲季风区海陆热力变化的观测分析及模拟评估[J].大气科学学报,2017,40(2):215-223.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(05):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(05):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(05):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(05):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(05):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(05):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(05):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(05):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(05):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(05):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
[11]胡佳洁,王 伟.2020年和1998年江淮流域梅雨期降水过程对比分析[J].成都信息工程大学学报,2022,37(06):674.[doi:10.16836/j.cnki.jcuit.2022.06.010]
HU Jiajie,WANG Wei.Analysis and Comparison of Precipitation Process between 2020 and 1998 Meiyu Periods in the Yangtze-Huaihe River[J].Journal of Chengdu University of Information Technology,2022,37(05):674.[doi:10.16836/j.cnki.jcuit.2022.06.010]
备注/Memo
收稿日期:2020-10-03
基金项目:国家自然科学基金资助项目(41005034); 公益性行业(气象)科研专项资助项目(GYHY201506001)