LAI Wenshan,LI Changjun,LI Chao.Study on Thresholds of Soil Volume Water Content in Shandong based on the Observation Data of Soil Water Automatic Station[J].Journal of Chengdu University of Information Technology,2021,36(05):545-552.[doi:10.16836/j.cnki.jcuit.2021.05.012]
基于土壤水分自动站观测资料的山东土壤体积含水量阈值研究
- Title:
- Study on Thresholds of Soil Volume Water Content in Shandong based on the Observation Data of Soil Water Automatic Station
- 文章编号:
- 2096-1618(2021)05-0545-08
- Keywords:
- atmospheric science; applied meteorology; soil hydrophysical constant; soil volumetric water content; threshold; checkout number; soil type
- 文献标志码:
- A
- 摘要:
- 针对土壤体积含水量质量控制过程中缺乏自动土壤水分观测网的长序列历史资料的问题,引入土壤水文常数来计算其阈值,对山东土壤水分观测网231站的土壤水文物理常数的实测值分土壤类别和土层深度进行分析。结果发现土壤水文物理常数随深度和土壤类别变化明显,进一步分析了土壤体积含水量的极值随土壤水文物理常数的变化后得到:极值随观测深度、不同土壤类别和土壤水文其物理常数变化皆较为明显。土壤体积含水量极大值90%以上集中在30~60(0.01 g·cm-3),土壤体积含水量极小值95%以上集中在2.5~10(0.01 g·cm-3)。研究得到的山东土壤体积含水量阈值经过验证可用于山东农业气象观测数据质量控制业务中。
- Abstract:
- In order to solve the problem of the lack of long series historical data of automatic soil moisture observation network in the process of soil volumetric water content quality control, the soil hydrological constant was introduced to calculate the threshold value, and the measured value of soil hydrophysical constant of station 231 of Shandong soil moisture observation network was analyzed by soil category and soil depth. It turns out that the soil hydrological and physical constant changed obviously with the depth and the soil type. Further analysis of the extreme value of soil volumetric water content with the change of soil hydrological and physical constant showed that the extreme value changed obviously with the observation depth, different soil types and soil hydrological and physical constant. The maximum value of soil volumetric water content above 90% is between 30-60(0.01 g·cm-3), and the minimum value of soil volumetric water content above 95% is between 2.5-10(0.01 g·cm-3). The threshold of soil volumetric water content obtained from the study has been verified to apply to the quality control of agricultural meteorological observation data in Shandong province.
参考文献/References:
[1] 曹婷婷,邵楠,李巍,等.影响全国自动土壤水分站运行能力因素分析[J].气象水文海洋仪器,2017,34(4):27-30.
[2] 王良宇,何延波.自动土壤水分观测数据异常值阈值研究[J].气象,2015,41(8):1017-1022.
[3] 王良宇,何延波,张艳红,等.一种自动土壤水分数据质量控制预警方法[J].气象科技,2016,44(4):528-534.
[4] 元保军.土壤水分自动观测数据质量控制与评估系统阈值研究方法[J].电子设计工程,2014,22(2):16-18.
[5] 王晓东,杨太明,吴必文,等.安徽省自动观测土壤水分质量控制方法[J].气象科技,2015,43(3):399-404.
[6] 张志富.自动站土壤水分资料质量控制方案的研制[J].干旱区地理,2013,36(1):101-108.
[7] 王佳强,赵煜飞,任芝花,等.中国自动土壤水分观测资料质量控制方法设计与效果检验[J].气象,2018,44(2):244-257.
[8] 王黎明,高炉东,刘焕乾,等.湖南省自动土壤水分数据订正拟合方法研究[J].湖南农业科学,2014(13):23-26.
[9] 赵忠凯.土壤水分监控保障系统研究[D].北京:北京邮电大学,2012.
[10] W A Dorigo,A Xaver,M.Vreugdenhil,et al.Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network[J].Vadose Zone Journal,2013,12(3):918-924.
[11] Bulut B,Yilmaz M T,Cosh M H,et al.Quality control of station-based soil moisture observations in Turkey[C].Agu Fall Meeting.AGU Fall Meeting Abstracts,2015.
[12] Christoph Paulik,Wouter Dorigo,Wolgang Wagner,et al.Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network[J].Elsevier B.V.,2014,30.
[13] Xia Youlong,Ford,Trent W,et al.Automated Quality Control of In Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products[J].ProQuest,2015,54(6).
[14] Anish C Turlapaty,Valentine G Anantharaj,Nicolas H Younan.A pattern recognition based approach to consistency analysis of geophysical datasets[J].Elsevier Ltd,2009,36(4).
[15] 胡新华,杜筱玲,全根元.人工与自动土壤水分平行观测资料对比分析[J].气象科技,2010,38(2):239-242.
[16] 耿增超,戴伟.土壤学[M].北京:科学出版社,2011.
[17] 成兆金,李斌.山东省土壤水分自动站土壤水分常数评估[J].湖北农业科学,2017,56(18):3468-3471.
[18] 李德成,张甘霖,龚子同.我国砂姜黑土土种的系统分类归属研究[J].土壤,2011,43(4):623-629.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(05):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(05):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(05):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(05):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[5]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(05):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[6]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(05):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[7]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(05):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[8]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(05):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[9]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(05):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[10]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
备注/Memo
收稿日期:2020-03-30
基金项目:公益性行业(气象)科研专项经费资助项目(GYHY201306044)