KONG Xianggang,YU You,SHEN Yanhong,et al.Study on the Electronic Structure Properties and Radiation Shielding Performance of MAPbBr(3-x)(BF4)x Crystal[J].Journal of Chengdu University of Information Technology,2021,36(05):580-586.[doi:10.16836/j.cnki.jcuit.2021.05.018]
MAPbBr(3-x)(BF4)x晶体电子结构性质和辐照屏蔽性能研究
- Title:
- Study on the Electronic Structure Properties and Radiation Shielding Performance of MAPbBr(3-x)(BF4)x Crystal
- 文章编号:
- 2096-1618(2021)05-0580-07
- 关键词:
- MAPbBr(3-x)(BF4)x; 第一性原理计算; 衰减系数; 屏蔽性能; 掺杂
- Keywords:
- MAPbBr(3-x)(BF4)x; first-principle calculation; attenuation coefficient; shielding performance; doping
- 分类号:
- O472+.2
- 文献标志码:
- A
- 摘要:
- 设计开发具有优异的γ射线和中子综合屏蔽性能的材料,成为研究的热点。在钙钛矿材料富含高原子序数元素Pb的基础上,进行低原子序数元素掺杂改性可制备综合屏蔽γ射线和中子的材料。从实验和理论上综合研究了BF4-基团对Br-离子进行替位掺杂,即将钙钛矿材料MAPbBr3(CH3NH3PbBr3)进行改性得到MAPbBr(3-x)(BF4)x实现对中子和γ射线的综合屏蔽。热力学计算表明随着掺杂浓度的提高,在高温下稳定性提高。通过缺陷形成能计算表明MAPbBr(3-x)(BF4)x具有更高的抗辐照稳定性。实验测试发现通过掺杂,屏蔽性能提升到53.2%。
- Abstract:
- The design and development of materials with excellent comprehensive shielding properties of γ-rays and neutrons has become a research hotspot. Based on the perovskite materials rich in high atomic number element Pb, doping modification with low atomic number element can prepare a material that comprehensively shields γ-rays and neutrons. This article comprehensively studied experimentally and theoretically the substitution doping of Br- ions by the BF-4 group, that is, the perovskite material MAPbBr3(CH3NH3PbBr3)was modified to obtain MAPbBr(3-x)(BF4)x comprehensively shielding of neutrons and gamma rays. Thermodynamic calculations show that the stability increases at high temperatures with the increases of doping concentration. The calculation of defect formation energy shows that MAPbBr(3-x)(BF4)x has higher stability against radiation. Experimental tests show that through doping, the shielding performance increased to 53.2%.
参考文献/References:
[1] Zhang Z H,Xue X X.Bainite Transformation of Low-carbon and Boron-containing Steel under Continuous Cooling[J].Journal of Iron and Steel Research International,2014,21(3):359-363.
[2] Celikbilek E M,Ersundu A E,Sayyed M I,et al.Evaluation of physical,structural properties and shielding parameters for K2O-WO3-TeO2 glasses for gamma ray shielding applications[J].Journal of Alloys and Compounds,2017,714: 278-286.
[3] 朱传新,蒋家桥,娄本超.铅硼聚乙烯等材料的DT中子透射性能研究[J].核电子学与探测技术,2009,29(5):988-992.
[4] Sayyed M I,Lakshminarayana G,Kityk I V,et al.Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications[J].Radiation Physics and Chemistry,2017,139:33-39.
[5] Yadollahi A,Nazemi E,Zolfaghari A,et al.Optimization of thermal neutron shield concrete mixture using artificial neural network[J].Nuclear Engineering and Design,2016,305:146-155.
[6] Zhou D,Zhang Q P,Zheng J,et al.Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol-gel method[J].Inorganic Chemistry Communications,2017,77:55-58.
[7] Yang W F,Igbari F,Lou Y H,et al.Tin Halide Perovskites:Progress and Challenges[J].Advanced Energy Materials,2020,10(13):1902584.
[8] He Y,Matei L,Jung H J,et al.High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J].Nature Communications,2018,9:1609.
[9] Stoumpos C C,Malliakas C D,Peters J A,et al.Crystal Growth of the Perovskite Semiconductor CsPbBr3:A New Material for High-Energy Radiation Detection[J].Crystal Growth & Design,2013,13(7):2722-2727.
[10] Chen S,Pei R.Ion-Induced Rectification of Nanoparticle Quantized Capacitance Charging in Aqueous Solutions[J].Journal of the American Chemical Society,2001,123(43):10607-10615.
[11] Zhao Y,Zhu K.Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J].Chemical Society Reviews,2016,45:655-689.
[12] Nagane S,Ogale S.CH3NH3Pb(BF4)3 and(C4H9NH3)2Pb(BF4)4 Family of 3D and 2D Perovskites without and with Iodide and Bromide Ions Substitution[J].The Journal of Physical Chemistry Letters,2016,7(22):4757-4762.
[13] Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals[J].Physical Review B,1993,47:558-561.
[14] Kresse G,Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J].Physical Review B,1994,49:14251.
[15] Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77:3865.
[16] Blöchl P E,Projector augmented-wave method[J].Physical Review B,1994,50:17953.
[17] Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations[J].Physical Review B,1976,13:5188.
[18] 王彦超,吕健,马琰铭.CALYPSO结构预测方法[J].科学通报,2015,60(27):2580-2587.
[19] Gerward L,Guilbert N,Jensen K B,et al.WinXCom-a program for calculating X-ray attenuation coefficients[J].Radiation Physics and Chemistry,2004,71(3-4):653-654.
[20] Yang L J,Wu D X,Tang J,et al.Large-scale synthesis of CH3NH3BF4 crystal and its application on CH3NH3PbBrx(BF4)(3-x) perovskite thin films[J].Chemical Physics Letters,2020,754:137638.
相似文献/References:
[1]李恬静,王 磊,何 林.空位缺陷对钇铝石榴石在高压下光学性质的影响[J].成都信息工程大学学报,2019,(02):216.[doi:10.16836/j.cnki.jcuit.2019.02.018]
LI Tianjing,WANG Lei,HE Lin.Influence of Vacancies on Optical Properties of Yttrium
Aluminum Garnet under High Pressure[J].Journal of Chengdu University of Information Technology,2019,(05):216.[doi:10.16836/j.cnki.jcuit.2019.02.018]
备注/Memo
收稿日期:2021-04-06
基金项目:四川省科技计划重点研发资助项目(2018GZ0515)