DAI Cheng,CHENG Yongjie,JIANG Tao,et al.Design and Realization of Campus Intelligent Vehicle Positioning and Navigation System[J].Journal of Chengdu University of Information Technology,2021,36(06):634-640.[doi:10.16836/j.cnki.jcuit.2021.06.009]
校园智能车定位导航系统设计与实现
- Title:
- Design and Realization of Campus Intelligent Vehicle Positioning and Navigation System
- 文章编号:
- 2096-1618(2021)06-0634-07
- Keywords:
- intelligent vehicle; positioning; path planning; autonomous navigation
- 分类号:
- TP242.6
- 文献标志码:
- A
- 摘要:
- 为实现智能车平台在校园场景下自主定位和导航,提出一种校园智能车导航系统设计方法。采用惯性导航系统对智能车进行定位,激光雷达创建局部地图,利用混合A*算法在局部地图中规划出合理的路径。整个系统中,上位机获取传感器采集的数据,通过惯性导航系统解算出智能车当前位姿,规划模块获取当前智能车位姿和周围障碍物信息后进行路径规划,并通过串口通信模块将路径信息传递给下位机控制模块,实现智能车的自主移动。实验结果表明:在校园内,智能车能够从起点出发,自主规划路径并绕过障碍物到达目标地点,验证了该导航系统的有效性。
- Abstract:
- In order to realize the autonomous positioning and navigation of the intelligent vehicle platform in the campus scene, a design method of the campus intelligent vehicle navigation system is proposed. The inertial navigation system is used to locate the intelligent vehicle, the lidar is used to create a local map, and the hybrid A* algorithm is used to plan a reasonable path in the local map. In the entire system, the upper computer obtains the data collected by the sensor, calculates the current posture of the intelligent vehicle through the inertial navigation system, the planning module obtains the current posture of the intelligent vehicle and the surrounding obstacle information, then carries out the path planning, and transmits the path information to the lower computer control module through the serial communication module, so as to realize the autonomous movement of the intelligent vehicle. The experimental results show that: in the campus, the intelligent vehicle can start from the starting point, autonomously plan the path and bypass obstacles to reach the target location, which verifies the effectiveness of the navigation system.
参考文献/References:
[1] Borenstein J,Everett H R,Feng L,et al.Mobile robot positioning-sensors and techniques[R].DTIC Document,1997.
[2] 方辉.GPS信号遮挡区的智能车定位方法研究[D].上海:上海交通大学,2010.
[3] 刘少山,唐洁,吴双.第一本无人驾驶技术书[M].北京:电子工业出版社,2017.
[4] Lavalle S M.Planning algorithms[M].Cambridge university press,2006.
[5] Kavraki L E,Svestka P,Latombe J C,et al.Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J].IEEE transactions on Robotics and Automation,1996,12(4):566-580.
[6] Lavalle S M.Rapidly-exploring random trees:A new tool for path planning[J].Computer Science Dept.1998,98(11).
[7] Karaman S,Frazzoli E.Sampling-based algorithms for optimal motion planning[J].The international journal of robotics research,2011,30(7):846-894.
[8] Gammell J D,Srinivasa S S,Barfoot T D.Informed RRT*:Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C].2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.IEEE,2014:2997-3004.
[9] Yang K,Moon S,Yoo S,et al.Spline-based RRT path planner for non-holonomic robots[J].Journal of Intelligent & Robotic Systems,2014,73(1):763-782.
[10] 杨瑶,付克昌,蒋涛.启发式RRT算法的AGV路径规划[J].计算机工程与应用,2020,56(12):125-133.
[11] Hart P E,Nilsson N J,Raphael B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE transactions on Systems Science and Cybernetics,1968,4(2):100-107.
[12] Stentz A.Optimal and efficient path planning for partially known environments[M].Intelligent unmanned ground vehicles.Springer,Boston,MA,1997:203-220.
[13] Harabor D,Grastien A.Online graph pruning for pathfinding on grid maps[C].Proceedings of the AAAI Conference on Artificial Intelligence,2011,25(1).
[14] Dolgov D,Thrun S,Montemerlo M,et al.Path planning for autonomous vehicles in unknown semi-structured environments[J].The international journal of robotics research,2010,29(5):485-501.
[15] 齐尧,徐友春,李华.一种基于改进混合A*的智能车路径规划算法[J].军事交通学院学报,2018,20(8):85-90
[16] 王勇祺,吕茵,董宇.基于SLAM的柏油马路智能清扫机器人[J].内燃机与配件,2020(5):222-223.
相似文献/References:
[1]王月红,蒋 涛,李 平,等.智能车路径跟踪控制器的设计[J].成都信息工程大学学报,2022,37(01):21.[doi:10.16836/j.cnki.jcuit.2022.01.004]
WANG Yuehong,JIANG Tao,LI Ping,et al.Design of Intelligent Vehicle Path Tracking Controller[J].Journal of Chengdu University of Information Technology,2022,37(06):21.[doi:10.16836/j.cnki.jcuit.2022.01.004]
备注/Memo
收稿日期:2021-03-09
基金项目:四川省科技厅机器人学国家重点实验室科研基金资助项目(2019-O13)