DING Yuqin,HU Wendong,SHAO Jian,et al.Objective Identification and Image Analysis on Qinghai-Tibet Plateau Vortex[J].Journal of Chengdu University of Information Technology,2021,36(06):674-679.[doi:10.16836/j.cnki.jcuit.2021.06.014]
青藏高原低涡客观识别与图像学分析
- Title:
- Objective Identification and Image Analysis on Qinghai-Tibet Plateau Vortex
- 文章编号:
- 2096-1618(2021)06-0674-06
- 分类号:
- P443
- 文献标志码:
- A
- 摘要:
- 为进一步分析青藏高原低涡的分布特征,对1979-2018年的高原低涡进行客观识别并引入图像学方法展开分析。结果表明:40年间,高原低涡年均生成35.1个,1997与2005年高原低涡出现频次最高,达53个,1984年出现频次最少,为21个; 图像学分析显示,在高原低涡初生时,24.1%的正涡度中心位于高原低涡的南部,占比最高,东部和北部的正涡度中心分别占19.5%和16.5%; 在高原低涡发展时,正涡度中心有29.9%集中于高原低涡重心附近,西南部和西部占比达到了20.3%和17.9%; 东北、西南和北部占比之和仅有9.1%。引入描述热带气旋的Okubo-Weiss(OW)参数VOW,VOW的负值项与切变有很强的相关性。研究发现,有24.5%的VOW项负值区中心位于高原低涡的东部区域,21.8%位于高原低涡的西北区,16.6%位于高原低涡的重心附近。在单个高原低涡生命周期内,有51.0%的VOW项负值区中心相对于高原低涡几乎不移动,15.5%的VOW项负值区中心则会向东移动。
- Abstract:
- In order to further analyze the distribution characteristics of the Qinghai-Tibet Plateau vortex, this article objectively identifies the plateau vortex from 1979 to 2018 and introduces imaging methods for analysis. The results show: in the past 40 years, 35.1 plateau vortices were generated every year. In 1997, the plateau vortex was the highest, reaching 53, and in 1984, the frequency was the least. Image analysis shows that 24.1% of the positive vorticity centers are located in the southern part of the plateau vortex at the beginning of the plateau vortex, which accounts for the highest proportion. The positive vorticity centers in the east and north account for 19.5% and 16.5%, respectively; during plateau vortex development, 29.9% of the positive vorticity center was concentrated near the center of gravity of the plateau low vortex, the proportions of the southwest and west reached 20.3% and 17.9%; the sum of the proportions of the northeast, southwest and north was only 9.1%. The Okubo-Weiss(OW)parameter(VOW)describing tropical cyclones is introduced. The negative value of VOW has a strong correlation with shear. The study found that 24.5% of the negative VOW term center is located in the eastern region of the plateau vortex,21.8% is located in the northwest region of the plateau vortex, and 16.6% is located near the center of gravity of the plateau vortex. During the life cycle of a single plateau vortex, the center of 51.0% of the negative value area of VOW almost does not move relative to the center of the plateau vortex, and the center of 15.5% of the negative value of VOW will move eastward.
参考文献/References:
[1] 李国平,赵福虎,黄楚惠,等.基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学,2014,38(4):756-769.
[2] 王鑫,李跃清,郁淑华,等.青藏高原低涡活动的统计研究[J].高原气象,2009,28(1):64-71.
[3] 李国平,刘晓冉,黄楚惠,等.夏季青藏高原低涡结构的动力学研究[J].成都信息工程学院学报,2011,26(5):461-469.
[4] 李山山,李国平.一次高原低涡与高原切变线演变过程与机理分析[J].大气科学,2017,41(4):713-726.
[5] 胡文东,赵光平,陈晓光,等.高空基本天气系统类别自动识别与沙尘暴系统识别试验[J].中国沙漠,2007(4):633-638.
[6] 胡文东,黄小玉,赵光平,等.高空基本影响天气系统定量化自动分析研究[J].气象,2008(6):107-111.
[7] 胡文东,杨侃,黄小玉,等.一次阵风锋触发强对流过程雷达资料特征分析[J].高原气象,2015,34(5):1452-1464.
[8] 颜长建,胡文东,张春梅,等.基于梯度的500hPa槽线天气系统自动分析方法[J].应用气象学报,2016,27(6):741-749.
[9] 林志强,周振波,假拉.高原低涡客观识别方法及其初步应用[C].中国气象学会.S4青藏高原及邻近地区天气气候影响.中国气象学会:中国气象学会,2012:41-52.
[10] 林志强.1979-2013年ERA-Interim资料的青藏高原低涡活动特征分析[J].气象学报,2015,73(5):925-939.
[11] 张博,李国平.基于CFSR资料的青藏高原低涡客观识别技术及应用[J].兰州大学学报(自然科学版),2017,53(1):106-111.
[12] Tim D Hewson,Helen A Titley.Objective identification,typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution[J].Meteorological Applications,2010,17(3).
[13] 冷亮,肖艳姣,吴涛.基于数学形态学的阵风锋识别算法[J].气象科技,2016,44(1):1-6.
[14] 邵建,胡文东,杨有林,等.基于图形学的致旱天气系统自动识别技术[J].干旱区研究,2019,36(3):664-669.
[15] Bao X H,Zhang F Q.Evaluaton of NCEP-CFSR,NCEP-NCAR,ERA-Interim,and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J].Climate,2013,26(1):206-214.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(06):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(06):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(06):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(06):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(06):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(06):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(06):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(06):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(06):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(06):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
备注/Memo
收稿日期:2020-10-21
基金项目:四川省基础应用重点资助项目(2018JY0056); 中国气象局-成都信息工程大学气象软件工程联合研究中心资助项目(2020102); 宁夏重点研发资助项目(2018BEG03002); 中国气象局资助项目(CMAYBY2019-131)