LIN Yingyi,WANG Shigong,MA Pan,et al.Exploration of the Characteristics of Climatotherapy in Hainan Island based on the Division of Climate Seasons[J].Journal of Chengdu University of Information Technology,2021,36(06):705-710.[doi:10.16836/j.cnki.jcuit.2021.06.018]
基于气候季节划分的海南岛气候康养特征探析
- Title:
- Exploration of the Characteristics of Climatotherapy in Hainan Island based on the Division of Climate Seasons
- 文章编号:
- 2096-1618(2021)06-0705-06
- Keywords:
- applied meteorology; medical meteorology; Hainan; climate season division; climate comfort level; climatotherapy
- 分类号:
- P49
- 文献标志码:
- A
- 摘要:
- 针对从季节上分析海南岛气候康养特征的研究较少,缺少相关的理论基础与科学依据,探析海南岛气候康养特征,获取了海南岛最佳的气候康养时期与区域。利用全国560个气象站点58年(1961-2018年)的逐日常规气象观测资料,根据中国气象行业标准(QX/T 152-2012)对海南岛进行气候季节划分,在此基础上分析海南岛各区域气候特征,并利用基于“黄金分割率”的体感温度计算人体舒适度。研究结果表明:根据标准法规定,海南岛属于无冬区,即春季起始时间为1月1日,夏季起始时间为3月14日,秋季起始时间为11月30日。其中夏季时间最长,平均天数为260天,春季以及秋季的时间(即11月下旬至次年3月中旬)与统计法上的冬季时间基本吻合。通过对比海南岛各季节的气候特征与广义舒适天数,春秋两个季节更适合人们进行气候康养活动。最终得出,在冬季(即海南岛的春季以及秋季),海南岛以三亚为中心的南部地区为最佳的气候康养区域; 夏季,可选择以五指山为中心的中部热带雨林旅游区进行避暑的康养活动。
- Abstract:
- The seasonal analysis of climate and nutrition characteristics of Hainan Island has not been reported, which is also lacking of relevant theoretical and scientific basis. The best period and region of climatotherapy in Hainan Island were obtained by analyzing the characteristics of climatotherapy in Hainan Island. Using the daily routine meteorological observation data with the duration of 58 years(1961-2018)of the country’s 560 weather stations, on the basis of China’s meteorological industry standard(QX/T 152-2012), the climatic seasons of Hainan Island were divided. On this basis, we analyse the characteristics of climate and somatosensory temperature based on "golden ratio"is used to calculate the human body comfort to explore the characteristics of climatotherapy in Hainan Island. The results show that, according to the standard law, Hainan Island is a winterless region. That is to say, the beginning of spring is unified on January 1,summer starts on March 14 and autumn on November 30. And summer is the longest, with an average of 260 days. Also, the time of spring and autumn(i.e., from late November to mid-March of the next year)basically coincides with the winter time in the statistical law. What’s more, by comparing the climate characteristics of different seasons in Hainan with the generalized comfortable days, spring and autumn are more suitable for people to carry out climate health and maintenance activities. In conclusion, in winter(i.e. spring and autumn in Hainan Island), the southern region centered on Sanya in Hainan is the best place for climatotherapy. In summer, the central tropical rain forest with Wuzhishan as the center can be selected for summer recreation.
参考文献/References:
[1] 简菁,王鹤一.德国气候疗养浅析及经典案例解读[EB/OL].https://m.sohu.com/a/248159395_266939.2019-11-05.
[2] SCHUH A,NOWAK D.Evidence-based acute and longlasting effects of climatotherapy in moderate altitudes and on the seaside[J].Deut Med Wochenschr,2011,136(4):135-139.
[3] 李正泉,贺忠华,胡中民.气候与健康及气候康养研究进展[J].海洋气象学报,2020,40(1):107-116.
[4] 蔡大鑫,刘少军,田光辉,等.海南岛旅游气候资源分析[J].现代农业科技,2010(16):18-20.
[5] 邢彩盈,张京红,刘少军,等.基于气候指标评估气候变化对海南旅游的影响[J].自然资源学报,2015,30(5):846-857.
[6] 于建良.气象行业标准《气候季节划分》(QX/T152-2012)应用实例[J].科教导刊(下旬),2017(1):284,294.
[7] 杨诗芳,毛裕定.浙江省近50年气温变化及四季划分[J].浙江气象,2008,29(4):1-6.
[8] 张东海,气候季节划分标准在贵州地区的适用性研究[J].高原山地气象研究,2014,34(4):77-82.
[9] 王式功,马盼,尚可政,等.一种基于黄金分割法构建人体舒适度计算方法[P].2012105963660,中国,2013.
[10] 张运,陈蕾,王卫民,等.基于人体舒适度的商洛市气候康养旅游评价[J].陕西气象,2020(3):31-35.
[11] 王敏珍,郑山,王式功,等.气温与湿度的交互作用对呼吸系统疾病的影响[J].中国环境科学,2016,36(2):581-588.
[12] 包海荣,刘晓菊,谭恩丽,等.兰州市气温和相对湿度对慢性阻塞性肺疾病患者门诊就诊人次的影响及其交互效应[J].北京大学学报(医学版),2020,52(2):308-316.
[13] 马盼,王式功,尚可政,等.气象舒适条件对呼吸系统疾病的影响[J].中国环境科学,2018,38(1):374-382.
[14] 冯有波,张哲鹏,徐莉.海滨气候疗法的研究进展[J].中国疗养医学,2011(7):586-588.
[15] 郭广会,徐莉,周彬.海滨气候疗法应用进展[J].中国疗养医学,2011(8):673-675.
[16] 张运山,张凯.海南省不同地域环境脑卒中患者康复疗效的比较[J].实用医药杂志,2016,33(9):775-777.
[17] 蒲宏伟,陈漠水.海南“候鸟”老年高血压患者降血压治疗疗效及相关炎症因子和神经功能缺损评分变化[J].中国老年学杂志,2015,35(16):4512-4514.
[18] 朱连荣,梁冰.海南岛气候对候鸟老人慢性病的影响[J].海南医学,2018,29(3):434-436.
相似文献/References:
[1]汤 彬,肖国杰,邬 亮.拉萨市近54年气温变化特征[J].成都信息工程大学学报,2019,(01):72.[doi:10.16836/j.cnki.jcuit.2019.01.014]
TANG Bin,XIAO Guojie,WU Liang.Variation Characteristics of Air Temperature in Lhasa City in Recent 54 Years[J].Journal of Chengdu University of Information Technology,2019,(06):72.[doi:10.16836/j.cnki.jcuit.2019.01.014]
[2]雷 蕾,程志刚,冯冬蕾,等.近16年秦巴山区TRMM降水资料的降尺度研究[J].成都信息工程大学学报,2018,(02):190.[doi:10.16836/j.cnki.jcuit.2018.02.014]
LEI Lei,CHENG Zhi-gang,FENG Dong-lei,et al.Statistical Downscaling of TRMM Precipitation Data inQinling-Daba Mountains Area in Recent 16 Years[J].Journal of Chengdu University of Information Technology,2018,(06):190.[doi:10.16836/j.cnki.jcuit.2018.02.014]
[3]刘新超,孙燕玲,朱克云.京昆高速成绵段大雾特征与气象要素分析[J].成都信息工程大学学报,2016,(增刊1):54.
[4]田云杰.基于K指数的四川省3月干旱研究[J].成都信息工程大学学报,2017,(05):571.[doi:10.16836/j.cnki.jcuit.2017.05.018]
TIAN Yun-jie.Study on Drought in March of Sichuan Province based on K Index[J].Journal of Chengdu University of Information Technology,2017,(06):571.[doi:10.16836/j.cnki.jcuit.2017.05.018]
[5]潘文琪,肖国杰,孟林夕,等.杭州市臭氧污染特征及其气象成因分析[J].成都信息工程大学学报,2019,(06):664.[doi:10.16836/j.cnki.jcuit.2019.06.016]
PAN Wenqi,XIAO Guojie,MENG Linxi,et al.Characteristics of Ozone Pollution and Analysis of Meteorological Causes in Hangzhou City[J].Journal of Chengdu University of Information Technology,2019,(06):664.[doi:10.16836/j.cnki.jcuit.2019.06.016]
[6]曹 阳,马 盼,王馨梓,等.呼吸与循环系统疾病死亡与气象条件的关联性[J].成都信息工程大学学报,2020,35(01):123.[doi:10.16836/j.cnki.jcuit.2020.01.017]
CAO Yang,MA Pan,WANG Xinzi,et al.The Associations between Meteorological Conditions and Deaths for Respiratory and Circulatory Diseases[J].Journal of Chengdu University of Information Technology,2020,35(06):123.[doi:10.16836/j.cnki.jcuit.2020.01.017]
[7]阮虞清,李林岑,黄梓芸,等.夏季川渝地区臭氧污染的气象成因研究[J].成都信息工程大学学报,2021,36(04):425.[doi:10.16836/j.cnki.jcuit.2021.04.012]
RUAN Yuqing,LI Lincen,HUANG Ziyun,et al.Meteorological Causes of Ozone Pollution in Sichuan and Chongqing in Summer[J].Journal of Chengdu University of Information Technology,2021,36(06):425.[doi:10.16836/j.cnki.jcuit.2021.04.012]
[8]张汉声,李谢辉,刘子堂,等.近50年云南省极端气候事件时空变化特征[J].成都信息工程大学学报,2021,36(04):434.[doi:10.16836/j.cnki.jcuit.2021.04.013]
ZHANG Hansheng,LI Xiehui,LIU Zitang,et al.Spatial and Temporal Change Characteristics of Extreme Climate Events in Yunnan Province in Recent 50 Years[J].Journal of Chengdu University of Information Technology,2021,36(06):434.[doi:10.16836/j.cnki.jcuit.2021.04.013]
[9]孙丽君,李谢辉.气候变暖背景下云南省旱灾风险区划研究[J].成都信息工程大学学报,2021,36(04):443.[doi:10.16836/j.cnki.jcuit.2021.04.014]
SUN Lijun,LI Xiehui.Study on Drought Disaster Risk Zoning in Yunnan Province under the Background of Climate Warming[J].Journal of Chengdu University of Information Technology,2021,36(06):443.[doi:10.16836/j.cnki.jcuit.2021.04.014]
[10]刘子堂,李谢辉,杨静坤.四川盆地极端降水事件时空变化特征及未来趋势分析[J].成都信息工程大学学报,2022,37(04):456.[doi:10.16836/j.cnki.jcuit.2022.04.015]
LIU Zitang,LI Xiehui,YANG Jingkun.Analysis on Spatiotemporal Change Characteristics and Future Trends of Extreme Precipitation Events in Sichuan Basin[J].Journal of Chengdu University of Information Technology,2022,37(06):456.[doi:10.16836/j.cnki.jcuit.2022.04.015]
备注/Memo
收稿日期:2020-11-10
基金项目:中国气象局公共服务中心创新基金重点资助项目(K2020010); 海南省南海气象防灾减灾重点实验室开放基金资助项目(SCSF202007)