YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(01):46-50.[doi:10.16836/j.cnki.jcuit.2022.01.008]
一种高分辨率卫星图像道路提取方法
- Title:
- A Method of Road Extraction for High-Resolution Satellite Images
- 文章编号:
- 2096-1618(2022)01-0046-05
- 分类号:
- TP75
- 文献标志码:
- A
- 摘要:
- 为实现高分辨率卫星图像的道路自动提取,设计一种编码器-解码器结构的图像分割方法。针对卫星图像中乡村地区的道路提取结果不佳,以及不能对阴影区域、被遮挡区域的道路进行有效提取的问题,以不含全连接层的VGG13作为编码器的骨干网络,对解码器部分进行设计,达到对道路区域进行有效提取的目的,并对模型训练使用的损失函数进行介绍。在开始训练之前,对DeepGlobe道路提取数据集进行预处理。使用PaddlePaddle深度学习框架展开实验,改进后的方法在验证集上的IoU,acc,Kappa分别可以达到0.6194,0.9811,0.7551,对比实验结果显示,与使用DeepLabv3+ 和 U-Net 的道路提取方法相比,可以有效提升道路提取结果的准确性和完整性。
- Abstract:
- In order to achieve the automatic road extraction of high-resolution satellite images, an image segmentation method based on the encoder-decoder structure is designed. In view of the poor results of road extraction in rural areas in satellite images, and the inability to effectively extract roads in shadow areas and sheltered areas, VGG13 without full connection layers is used as the backbone network of the encoder, the decoder is designed to effectively extract road areas, and the loss functions used in the training of model are introduced. Before starting the process of training, the DeepGlobe road extraction data set is preprocessed. The PaddlePaddle deep learning framework is used to carry out experiments. On the validation set, the value of IoU, acc and Kappa of the improved method can reach 0.6194, 0.9811 and 0.7551 respectively. The experimental results show that this method can effectively improve the accuracy and integrity of road extraction results compared with the road extraction methods using DeepLabv3+ and U-Net.
参考文献/References:
[1] Jie H,Li S,Gang S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[2] Buslaev A V,Seferbekov S S,Iglovikov V I,et al.Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[3] Yuewu H,Zhaoying L,Ting Z,et al.C-UNet: Complement UNet for Remote Sensing Road Extraction[J].Sensors,2021,21(6):2153.
[4] Iglovikov V,Shvets A.TernausNet:U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation[DB/OL].https://arxiv.org/pdf/1801.05746.pdf,2018-01-17.
[5] Pan D,Zhang M,Zhang B.A Generic FCN-based Approach for the Road-Network Extraction from VHR Remote Sensing Images-Using OpenStreetMap as Benchmarks[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:2662-2673.
[6] Zhang Z,Liu Q,Wang Y.Road Extraction by Deep Residual U-Net[J].IEEE Geoscience and Remote Sensing Letters,2018,15(5):745-753.
[7] 李代栋,赫晓慧,李盼乐,等.基于SPUD-ResNet的遥感影像道路提取网络[OL].http://kns.cnki.net/kcms/detail/11.2127.TP.20201111.1410.010.html.计算机工程与应用,2020:1-10.
[8] Chen Z,Wang C,Li J,et al.Reconstruction Bias U-Net for Road Extraction from Optical Remote Sensing Images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:2284-2294.
[9] Bastani F,He S,Abbar S,et al.RoadTracer: Automatic Extraction of Road Networks from Aerial Images[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018.
[10] 蒋星详,肖莉.一种多特征融合的高分辨率遥感影像道路中心线提取算法[J].测绘地理信息,2019,44(4):98-101.
[11] Shao Z,Zhou Z,Huang X,et al.MRENet: Simultaneous Extraction of Road Surface and Road Centerline in Complex Urban Scenes from Very High-Resolution Images[J].Remote Sensing,2021,13(2).
[12] Mattyus G,Luo W,Urtasun R.DeepRoadMapper:Extracting Road Topology from Aerial Images[C].2017 IEEE International Conference on Computer Vision(ICCV),2017.
[13] Mnih V,Hinton G E.Learning to detect roads in high-resolution aerial images[C]//European Conference on Computer Vision.Springer,Berlin,Heidelberg,2010.
[14] Tao S,Chen Z,Yang W,et al.Stacked U-Nets with Multi-output for Road Extraction[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[15] Chaurasia A,Culurciello E.Linknet: Exploiting encoder representations for efficient semantic segmentation[DB/OL].https://arxiv.org/abs/1707.03718,2017-06-14.
[16] Filin O,Zapara A,Panchenko S.Road Detection with EOSResUNet and Post Vectorizing Algorithm[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[17] Ronneberger O,Fischer P,Brox T.U-Net: Convolutional Networks for Biomedical Image Segmentation[C].International Conference on Medical Image Computing and Computer-Assisted Intervention,2015.
[18] SimonyanK,Zisserman A.Very Deep Convolutional Networks for Large-Scale Image Recognition[DB/OL].https://arxiv.org/pdf/1409.1556.pdf,2015-04-10.
[19] Demir I,Koperski K,Lindenbaum D,et al.DeepGlobe 2018:A Challenge to Parse the Earththrough Satellite Images[DB/OL].https://arxiv.org/pdf/1805.06561.pdf,2018-05-17.
[20] Zhou L,Zhang C,Ming W.D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[21] Kingma D,Ba J.Adam: A Method for Stochastic Optimization[DB/OL].https://arxiv.org/abs/1412.6980,2017-01-30.
[22] Wu Q,Luo F,Wu P,et al.Automatic Road Extraction from High-Resolution Remote Sensing Images using a Method Based on Densely Connected Spatial Feature-Enhanced Pyramid[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,14:3-17.
相似文献/References:
[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的
自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on
Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(01):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
[3]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[4]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(01):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[5]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(01):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[6]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(01):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[7]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(01):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[8]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(01):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
备注/Memo
收稿日期:2021-07-15
基金项目:四川省科技计划资助项目(2020YFG0442、2020YFG0453)