PDF下载 分享
[1]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46-50.[doi:10.16836/j.cnki.jcuit.2022.01.008]
 YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(01):46-50.[doi:10.16836/j.cnki.jcuit.2022.01.008]
点击复制

一种高分辨率卫星图像道路提取方法

参考文献/References:

[1] Jie H,Li S,Gang S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[2] Buslaev A V,Seferbekov S S,Iglovikov V I,et al.Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[3] Yuewu H,Zhaoying L,Ting Z,et al.C-UNet: Complement UNet for Remote Sensing Road Extraction[J].Sensors,2021,21(6):2153.
[4] Iglovikov V,Shvets A.TernausNet:U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation[DB/OL].https://arxiv.org/pdf/1801.05746.pdf,2018-01-17.
[5] Pan D,Zhang M,Zhang B.A Generic FCN-based Approach for the Road-Network Extraction from VHR Remote Sensing Images-Using OpenStreetMap as Benchmarks[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:2662-2673.
[6] Zhang Z,Liu Q,Wang Y.Road Extraction by Deep Residual U-Net[J].IEEE Geoscience and Remote Sensing Letters,2018,15(5):745-753.
[7] 李代栋,赫晓慧,李盼乐,等.基于SPUD-ResNet的遥感影像道路提取网络[OL].http://kns.cnki.net/kcms/detail/11.2127.TP.20201111.1410.010.html.计算机工程与应用,2020:1-10.
[8] Chen Z,Wang C,Li J,et al.Reconstruction Bias U-Net for Road Extraction from Optical Remote Sensing Images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:2284-2294.
[9] Bastani F,He S,Abbar S,et al.RoadTracer: Automatic Extraction of Road Networks from Aerial Images[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018.
[10] 蒋星详,肖莉.一种多特征融合的高分辨率遥感影像道路中心线提取算法[J].测绘地理信息,2019,44(4):98-101.
[11] Shao Z,Zhou Z,Huang X,et al.MRENet: Simultaneous Extraction of Road Surface and Road Centerline in Complex Urban Scenes from Very High-Resolution Images[J].Remote Sensing,2021,13(2).
[12] Mattyus G,Luo W,Urtasun R.DeepRoadMapper:Extracting Road Topology from Aerial Images[C].2017 IEEE International Conference on Computer Vision(ICCV),2017.
[13] Mnih V,Hinton G E.Learning to detect roads in high-resolution aerial images[C]//European Conference on Computer Vision.Springer,Berlin,Heidelberg,2010.
[14] Tao S,Chen Z,Yang W,et al.Stacked U-Nets with Multi-output for Road Extraction[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[15] Chaurasia A,Culurciello E.Linknet: Exploiting encoder representations for efficient semantic segmentation[DB/OL].https://arxiv.org/abs/1707.03718,2017-06-14.
[16] Filin O,Zapara A,Panchenko S.Road Detection with EOSResUNet and Post Vectorizing Algorithm[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[17] Ronneberger O,Fischer P,Brox T.U-Net: Convolutional Networks for Biomedical Image Segmentation[C].International Conference on Medical Image Computing and Computer-Assisted Intervention,2015.
[18] SimonyanK,Zisserman A.Very Deep Convolutional Networks for Large-Scale Image Recognition[DB/OL].https://arxiv.org/pdf/1409.1556.pdf,2015-04-10.
[19] Demir I,Koperski K,Lindenbaum D,et al.DeepGlobe 2018:A Challenge to Parse the Earththrough Satellite Images[DB/OL].https://arxiv.org/pdf/1805.06561.pdf,2018-05-17.
[20] Zhou L,Zhang C,Ming W.D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction[C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018.
[21] Kingma D,Ba J.Adam: A Method for Stochastic Optimization[DB/OL].https://arxiv.org/abs/1412.6980,2017-01-30.
[22] Wu Q,Luo F,Wu P,et al.Automatic Road Extraction from High-Resolution Remote Sensing Images using a Method Based on Densely Connected Spatial Feature-Enhanced Pyramid[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,14:3-17.

相似文献/References:

[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(01):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[3]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[4]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
 REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(01):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[5]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
 FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(01):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[6]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
 YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(01):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[7]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(01):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[8]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(01):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]

备注/Memo

收稿日期:2021-07-15
基金项目:四川省科技计划资助项目(2020YFG0442、2020YFG0453)

更新日期/Last Update: 2022-02-21