WANG Ren,SUN Haoran,JING Shouzhao,et al.Design of RF Sensor for Non-destructive Testing of Materials in 5G Frequency Band[J].Journal of Chengdu University of Information Technology,2022,37(01):51-54.[doi:10.16836/j.cnki.jcuit.2022.01.009]
5G频段下材料无损检测传感装置设计
- Title:
- Design of RF Sensor for Non-destructive Testing of Materials in 5G Frequency Band
- 文章编号:
- 2096-1618(2022)01-0051-04
- 分类号:
- TN806
- 文献标志码:
- A
- 摘要:
- 利用高灵敏度射频无损检测传感器评估样品的电磁特性在航空航天和生物医学等领域应用越来越广泛,提出一种工作在5G频段下的高灵敏度材料无损检测传感装置,该传感装置基于微带型射频电路和矢量网络分析仪。射频电路包括一对T型结功分器、一对交指电容(IDC)和互补谐振环(CSRR)。对该电路加工并对标准样品如 PVC、玻璃环氧树脂、FR4等材料测试发现:测量样品的介电特性与已发表文献结果吻合,证明了该无损检测传感装置的高精度和可兼容特性。
- Abstract:
- The use of high-sensitivity radio frequency non-destructive testing sensors to evaluate the electromagnetic properties of samples is more and morewidely used in aerospace and biomedicine fields. This paper proposes a high-sensitivity material nondestructive detection sensor device that works in the 5G frequency band. The sensor device is designed based on a microstrip radio frequency circuit and a vector network analyzer. The radio frequency circuit includes a pair of T-junction power dividers and a pair of interdigital capacitors(IDC)and Complementary Split-Ring Resonator(CSRR). After processing the circuit and testing standard samples such as PVC, glass epoxy resin, FR4 and other materials, it is found that the dielectric properties of the measured samples are consistent with those of the published data, which proves the high precision and compatibility of the non-destructive testing sensor device.
参考文献/References:
[1] 王益,张翠翠,王建忠,等.闭式谐振腔法微波介质陶瓷介电常数测量[J].仪器仪表学报,2017,38:2500-2507.
[2] 汪江宇,唐涛,何胜,等.Ku波段高增益圆极化宽带微带阵列天线设计[J].成都信息工程学院学报,2016,1:18-21.
[3] 王依超,郭高凤,王娟,等.自由空间法测量电磁材料电磁参数[J].宇航材料工艺,2014,1:25.
[4] 刘君,许卫东,刘珩,等.基于微波反射率波动特性的混凝土介电常数测量方法[J].电波科学学报,2015,30(1):141-146.
[5] 卞峰,黄卡玛.微波化学反应器与实验结果的重复性[J].化工学报,2007,58(2):378-382.
[6] 郭富祥,赖展军,薛锋章.基于微带谐振法的介电常数无损伤测量[J].重庆邮电大学学报(自然科学版),2017,29(3):346-351.
[7] Chretiennot T,Dubuc D,Grenier K.A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions[J].IEEE Transactions on Microwave Theory and Techniques,2012,61(2):972-978.
[8] Jang C,Park J K,Lee H J,et al.Non-invasive fluidic glucose detection based on dual microwave complementary split ring resonators with a switching circuit for environmental effect elimination[J].IEEE Sensors Journal,2020,20(15):8520-8527.
[9] Kiani S,Rezaei P,Navaei M.Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection[J].Measurement,2020,160:107805.
[10] Jha A K,Delmonte N,Lamecki A,et al.Novel MNZ-type microwave sensor for testing magnetodielectric materials[J].Scientific reports,2020,10(1):1-13.
[11] Armghan A,Alanazi T M,Altaf A,et al.Characterization of Dielectric Substrates Using Dual Band Microwave Sensor[J].IEEE Access,2021,9:62779-62787.
[12] Jha A K,Lamecki A,Mrozowski M,et al.A highly sensitive planar microwave sensor for detecting direction and angle of rotation[J].IEEE Transactions on Microwave Theory and Techniques,2020,68(4):1598-1609.
[13] Lu J Y,Tseng C H.Permittivity Measurement of Sucrose Solution Using Complementary Spit-Ring Resonator Sensor[C].2020 IEEE Asia-Pacific Microwave Conference(APMC).IEEE,2020:486-488.
[14] Gan H Y,Zhao W S,Liu Q,et al.Differential microwave microfluidic sensor based on microstrip complementary split-ring resonator(MCSRR)structure[J].IEEE Sensors Journal,2020,20(11):5876-5884.
[15] Sun H R,Du G,Liu G,et al.Symmetric coplanar waveguide sensor loaded with interdigital capacitor for permittivity characterization[J].International Journal of RF and Microwave Computer-Aided Engineering,2020,30(1):e22023.
[16] Alahnomi R A,Zakaria Z,Yussof Z M,et al.Review of Recent Microwave Planar Resonator-Based Sensors:Techniques of Complex Permittivity Extraction,Applications,Open Challenges and Future Research Directions[J].Sensors,2021,21(7):2267.
备注/Memo
收稿日期:2021-07-01
基金项目:广东省重点领域研发计划项目(2020B0101080001)