PDF下载 分享
[1]程 思,陶宏才.一种融合时间权值和用户行为序列的电影推荐模型[J].成都信息工程大学学报,2022,37(03):241-247.[doi:10.16836/j.cnki.jcuit.2022.03.001]
 CHENG Si,TAO Hongcai.A Movie Recommendation Model based on Time Weights and User Behavior Sequences[J].Journal of Chengdu University of Information Technology,2022,37(03):241-247.[doi:10.16836/j.cnki.jcuit.2022.03.001]
点击复制

一种融合时间权值和用户行为序列的电影推荐模型

参考文献/References:

[1] T Mikolov,S Kombrink,L Burget,et al.Extensions of Recurrent Neural Network Language Model[C].Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing,2011:5528-5531.
[2] J Manotumruksa,E Yilmaz.Sequential-based Adversarial Optimization for Personalized Top-n Item Recommendation[C].Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval,2020:2045-2048.
[3] P Wang,Y Fan,L Xia,et al.KERL:A Knowledge-guided Reinforcement Learning Model for Sequential Recommendation[C].Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval,2020:209-218.
[4] B Hidasi,A Karatzoglou,L Baltrunas,et al.Session-based Recommendations with Recurrent Neural Networks[C].Proceedings of the 4th International Conference on Learning Representations,2016:1-10.
[5] B Hidasi,A Karatzoglou. Recurrent Neural Networks with Top-k Gains for Session-based Recommendations[C].Proceedings of the 27th ACM International Conference on Information and Knowledge Management,2018:843-852.
[6] 袁涛,牛树梓,李会元.一种基于Cw-rnn的多时间尺度序列建模推荐算法[J].中文信息学报,2020,34(6):97-105.
[7] Dey R,Salemt F M.Gate-variants of Gated Recurrent Unit(GRU)neural networks[C].2017 IEEE 60th International Midwest Symposium on Circuits and Systems(MWSCAS),2017:1597-1600.
[8] Xia H,Luo Y,Liu Y.Attention neural collaboration filtering based on GRU for recommender systems[J].Complex & Intelligent Systems,2021,7(3):1367-1379.
[9] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C].Advances in Neural Information Processing Systems,2017:5998-6008.
[10] Kang W C,McAuley J.Self-attentive sequential recommendation[C].2018 IEEE International Conference on Data Mining(ICDM).IEEE,2018:197-206.
[11] Xu C,Feng J,Zhao P,et al.Long- and short-term self-attention network for sequential recommendation[J].Neurocomputing,2021,423:580-589.
[12] Zhou G,Mou N,Fan Y,et al.Deep interest evolution network for click-through rate prediction[C].Proceedings of the AAAI conference on artificial intelligence,2019,33(1):5941-5948.
[13] Zhou G,Zhu X,Song C,et al.Deep interest network for click-through rate prediction[C].Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:1059-1068.

备注/Memo

收稿日期:2022-03-15
基金项目:国家自然科学基金资助项目(61806170)

更新日期/Last Update: 2022-06-06