ZHUANG Huimin,ZHANG Jianglin,YANG Mingkai.Parameter Robust Optimization of Double LCC Compensation Network for Electric Vehicle Wireless Charging System[J].Journal of Chengdu University of Information Technology,2022,37(03):276-283.[doi:10.16836/j.cnki.jcuit.2022.03.007]
电动汽车无线充电系统双边LCC补偿网络参数的鲁棒优化设计
- Title:
- Parameter Robust Optimization of Double LCC Compensation Network for Electric Vehicle Wireless Charging System
- 文章编号:
- 2096-1618(2022)03-0276-08
- Keywords:
- electric vehicle; MCR-WPT system; double LCC compensation; information gap decision theory; robust optimization
- 分类号:
- TM724
- 文献标志码:
- A
- 摘要:
- 为解决电动汽车无线充电系统耦合系数发生改变导致系统性能下降的问题,研究磁耦合谐振式无线电能传输(MCR-WPT)双边LCC网络的补偿特性,得出补偿线圈参数的合理取值范围,应用信息间隙决策理论的风险规避策略,以转换效率最高为目标,构建考虑耦合系数不确定性的补偿网络参数优化模型,通过优化计算获取补偿线圈参数的最优值,实现在耦合系数变化较大的情况下,仍能在满足充电负荷功率需求的同时使转换效率最大。通过对一个3 kW的基于双边LCC补偿的无线充电系统算例分析,验证鲁棒优化设计方法的有效性。结果表明:当系统的耦合系数减小27%时,系统的输出功率仍然不低于3 kW,而转换效率仅下降1%,且不低于96%。
- Abstract:
- In order to solve the system performance degradation caused by the change of coupling coefficient of electric vehicle wireless charging system, the characteristics of double LCC compensation network of magnetic coupled resonant wireless power transfer(MCR-WPT)were investigated so that the reasonable value range of compensation coil parameters was gained. And the risk-avoidance strategy based on information gap decision theory was applied to construct the robust optimization model about compensation network parameters considering the uncertainty of coupling coefficient, aiming at the highest conversion efficiency. The optimal values of compensation parameters were obtained through optimization calculation, which can still meet the power demand of charging load and maximize the conversion efficiency when the coupling coefficient changes greatly. By an example of 3 kW wireless charging system with double LCC compensation network analyzed, it verifies the effectiveness of the robust optimization method. The results show that when the coupling coefficient of the system is reduced by 27%, the output power of the system is still not less than 3 kW, while the conversion efficiency is only reduced by 1% and not less than 96%.
参考文献/References:
[1] 薛明,杨庆新,章鹏程,等.无线电能传输技术应用研究现状与关键问题[J].电工技术学报,2021,36(8):1547-1568.
[2] Ahmad A,Alam M S,Chabaan R.A comprehensive review of wireless charging technologies for electric vehicles[J].IEEE Transactions on Transportation Electrification,2018,4(1):38-63.
[3] 陈庆彬,叶逢春,陈为.无线电能传输系统补偿拓扑综述[J].电气开关,2017,55(5):1-4.
[4] Li Weihan,Zhao Han,Li Siqi,et al.Integrated compensation topology for wireless charger in electric and plug-in electric vehicles[J].IEEE Transactions on Industrial Electronics,2015,62(7):4215-422.
[5] Li Siqi,Li Weihan,Deng Junjun,et al.A double-sided LCC compensation network and its tuning method for wireless power transfer[J].IEEE Transactions on Vehicular Technology,2015,64(6):2261- 2273.
[6] 陈凯楠,赵争鸣,刘方,等.电动汽车双向无线充电系统谐振拓扑分析[J].电力系统自动化,2017,41(2):66-72.
[7] Li Weihan,Zhao Han,Deng junjun,et al.Comparison study on SS and double-sided compensation topoloties for EV/PHEV wireless charges[J].IEEE Trans.On Vehicular Technology,2016,65(6):4429-4439.
[8] 董纪清,杨上苹,黄天祥,等.用于磁耦合谐振式无线电能传输系统的新型恒流补偿网络[J].中国电机工程学报,2015,35(17):4468-4476.
[9] 杨庆新,章鹏程,祝丽花,等.电动汽车无线充电系统双边LCC型谐振补偿网络及电磁安全性研究[J].西安交通大学学报,2021,55(5):171-180.
[10] ZHU Q,WANG L,LIAO C,et al. Compensate capacitor optimization for kilowatt-level magnetically resonant wire-less charging system[J].IEEE Transactions on Industrial Electronics,2014,61(12):6758-6768.
[11] 刘坤,葛佳蔚,杨富尧,等.用于电动汽车无线充电的电压源型ICPT系统最优电容补偿参数选择方法[J].电力自动化设备,2021,46(6):53-58.
[12] 董晓帅,王林,伍敏,等.基于LCC补偿的无线电系统的分析与控制[J].电力电子技术,2021,55(3):10-13.
[13] 苏玉刚,吴学颖,赵鱼名,等.互补对称式LCC谐振网络的电场耦合式无线电能传输系统参数优化[J].电工技术学报,2019,34(14):2874-2883.
[14] 刘桃.电动汽车磁耦合谐振式无线充电系统的电路研究[D].绵阳:西南科技大学,2021.
[15] 王松岑,韩秀.磁耦合谐振式无线充电系统双边LCC补偿网络参数设计方法研究[J].电气技术,2019,20(6):12-16.
[16] BEN-HAIM Y.Info-gap decision theory[M].San Diego,CA:Academic,2001.
[17] 彭飞翔,隋鑫,胡姝博,等.基于信息间隙决策的风火联合投标策略[J].电网技术,2021,45(9):3379-3388.
备注/Memo
收稿日期:2021-11-20
基金项目:四川省科技计划资助项目(2021YFSY0052、2021YFG0215)