LI Yu,CHEN Keyi,XIAN Zhipeng,et al.The Evaluation of All-Sky Assimilation of FY-3C/MWHS-2 on Mei-yu Forecasts over Jianghuai Region[J].Journal of Chengdu University of Information Technology,2022,37(03):308-317.[doi:10.16836/j.cnki.jcuit.2022.03.011]
风云三号C星微波湿度计资料的全天候同化在江淮梅雨期降水预报中的应用研究
- Title:
- The Evaluation of All-Sky Assimilation of FY-3C/MWHS-2 on Mei-yu Forecasts over Jianghuai Region
- 文章编号:
- 2096-1618(2022)03-0308-10
- Keywords:
- atmospheric science; satellite data assimilation; FY-3C; MWHS-2; all-sky assimilation; mei-yu rainfall
- 分类号:
- P405
- 文献标志码:
- A
- 摘要:
- 梅雨锋系统具有突发性强、发展迅速、容易引起洪涝灾害等特点,其预报一直是气象业务系统中急需解决的重难点问题。基于此,为更好地研究风云资料全天候同化对于改善模式初始场质量,以及提高数值天气预报准确度的效果,选取2020年6月20-25日一次典型的梅雨锋过程进行模拟。基于中尺度WRF-ARW模式及WRFDA同化系统,利用FY-3C微波湿度计观测资料进行同化试验。试验结果表明:全天候同化试验提高了FY-3C/MWHS-2的资料使用率,在减小湿度场、温度场等方面的预报误差起到积极作用,且在梅雨锋降水预报中,减少了降水虚报问题的发生,提高了降水落区分布和降水量级的预报水平,对降水精细化预报和制定防灾减灾措施等工作具有一定的参考价值。
- Abstract:
- The characteristics of mei-yu frontal which is sudden to occur, develops rapidly and is easy to cause flood disaster, increase the difficulty of predictions makes the accurate forecasting of mei-yu frontal rainfall an urgent and challenging issue. Therefore, in order to study the effect of all sky assimilation on offering adequate information for the NWP initial fields and improving the accuracy of NWP, a typicalmei-yu front process from June 20 to June 25, 2020 is selected for simulation. Based on the mesoscale WRF-ARW model and WRFDA assimilation system, the FY-3C microwave hygrometer observation data is used to conduct an assimilation test. The test results show that: The all-weather assimilation test has increased the data utilization rate of FY-3C/MWHS-2, and played a positive role in reducing the forecast errors in the humidity field and temperature field. Moreover, in the mei-yu front precipitation forecast, it has reduced the occurrence of precipitation false alarms. It also improves the forecasting level of precipitation area distribution and precipitation level, and has certain reference value for the work of precise precipitation forecasting and the formulation of disaster prevention and mitigation measures.
参考文献/References:
[1] 胡娅敏,丁一汇.BCC——RegCM1.0对1991-2005年江淮梅雨季的数值模拟[J].科学通报,2010,55(6):490-496.
[2] Sun J,Zhang Y,Liu R,et al.A Review of Research on Warm-Sector Heavy Rainfall in China[J].Advances in Atmospheric ences,2019,36(12):1299-1307.
[3] 许小永,刘黎平,郑国光.集合卡尔曼滤波同化多普勒雷达资料的数值试验[J].大气科学,2006(4):712-728.
[4] 王叶红,赖安伟,赵玉春.降水资料同化在梅雨锋特大暴雨个例模拟中的应用研究[J].气象学报,2012,70(3):402-417.
[5] 刘寅,何光鑫,刘佳伟,等.Analysis of the effect of 3dvar and ensrf direct assimilation of radar data on the forecast of a heavy rainfall event[J].Journal of Tropical Meteorology,2016,22(03):413-425.
[6] Hongli Li,Xiangde Xu,Yang Hu,et al.Miglietta. Assimilation of Doppler Radar Data and Its Impact on Prediction of a Heavy Meiyu Frontal Rainfall Event[J].Advances in Meteorology,2018.
[7] Anwei Lai,Jinzhong Min,Jidong Gao,et al.Assimilation of Radar Data,Pseudo Water Vapor,and Potential Temperature in a 3DVAR Framework for Improving Precipitation Forecast of Severe Weather Events[J].Atmosphere,2020,11(2).
[8] 齐琳琳,孙建华,张小玲.ATOVS资料在长江流域一次暴雨过程模拟中的应用[J].大气科学,2005(5):780-794.
[9] 郭锐,李泽椿,张国平.ATOVS资料在淮河暴雨预报中的同化应用研究[J].气象,2010,36(2):1-12.
[10] 张同,鲍艳松,陆其峰.IASI卫星资料同化对江淮暴雨预报的试验研究[J].科学技术与工程,2016,16(6):9-16.
[11] Geer A J,P Bauer.Enhanced use of all-sky microwave observations sensitive to water vapour,cloud and precipitation[R].ECMWF Technical Memoranda,2010:620.
[12] Geer A J,P Bauer.Observation errors in all-sky data assimilation[J].Quart.J.Roy.Meteorol.Soc.,2011,137(661):2024-2037.
[13] Bauer P,A J Geer,P Lopez,et al.,Direct 4D-Var assimilation of all-sky radiances.Part I:Implementation[J].Quart.J.Roy.Meteorol.Soc.,2010,136(652),1868-1885.
[14] Kazumori M,T Kadowaki.Development of an all_sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system.[R]21st Int.TOVS Study Conf.,Darmstadt,Germany,International ATOVS Working Group,2017:1-9.
[15] Zhipeng Xian,Keyi Chen,Jiang Zhu.All-Sky Assimilation of the MWHS-2 Observations and Evaluation the Impacts on the Analyses and Forecasts of Binary Typhoons[J].Journal of Geophysical Research: Atmospheres,2019,124(12):6359-6378.
[16] Prigent C,Aires F,Rossow W B.Land surface microwave emissivities over the globe for a decade[J].Bull.Amer.Meteor.Soc.,2006,87(11):1573-1584.
[17] 钱博,陆其峰,杨素英,等.卫星遥感微波地表发射率研究综述[J].地球物理学进展,2016(3):960-964.
[18] Karbou F,Gérard E,Rabier F.Global 4D-Var assimilation and forecast experiments using AMSU observations over land. Part-I:Impact of various land surface emissivity parameterizations[J].Weather and Forecasting,2010,25(1):5-19.
[19] Karbou,Fatima,Rabier,et al.Global 4DVAR Assimilation and Forecast Experiments Using AMSU Observations over Land.Part II: Impacts of Assimilating Surface-Sensitive Channels on the African Monsoon during AMMA[J].Weather and Forecasting,2010,25(1):5-19.
[20] Keyi CHEN,Niels BORMANN, Stephen ENGLISH,et al.Assimilation of Feng-Yun-3B Satellite Microwave Humidity Sounder Data over Land[J].Advances in Atmospheric Sciences,2018,35(3):268-275.
[21] Lawrence H,Bormann N,Geer A,et al.An evaluation and assimilation of FY-3C MWHS-2 at ECMWF[R].EUMETSAT/ECMWF Fellowship Programme Research Reports,2015.
[22] Lu Q F,Lawrence H,Bormann N,et al.An evaluation of FY-3C satellite data quality at ECMWF and the Met Office[R].ECMWF Technical Memoranda,2015.
[23] Lawrence H,Bormann N,Geer A J,et al.Evaluation and Assimilation of the Microwave Sounder MWHS-2 Onboard FY-3C in the ECMWF Numerical Weather Prediction System[J]. IEEE Transactions on Geoscience and Remote Sensing,2018:1-34.
[24] Fabien Carminati,Brett Candy,William Bell,et al.Assessment and Assimilation of FY-3 Humidity Sounders and Imager in the UK Met Office Global Model[J].Advances in Atmospheric Sciences,2018,35(8):942-954.
[25] Lipeng Jiang,Chunxiang Shi,Tao Zhang,et al.Evaluation of Assimilating FY-3C MWHS-2 Radiances Using the GSI Global Analysis System[J].Remote Sensing,2020,12(16).
[26] Li,Qin,Liu.A new generation of Chinese FY-3C microwave sounding measurements and the initial assessments of its observations[J].International Journal of Remote Sensing,2016,37(17):4035-4058.
[27] Parrish D F,Derber,J C.The National Meteorological Center’s spectral statistical-interpolation analysis system[J].Monthly Weather Review,1992,120(8):1747-1763.
[28] Prabhakara C,Dalu G.Remote sensing of the surface emissivity at 9μm over the globe[J].Geophys.Res.,1976,81(21):3719-3724.
[29] Salisburg J W,D’Aria D M.Emissivity of terrestrial materials in the 8~14 μm atmospheric window[J].Remote Sens,Environ.,1992,42(2):83-106.
[30] Wilber,Kratz D P,Gupta S K.Surface emissivity maps for use in satellite retrievals of longwave radiation[R].NASA /TP-1999-209362.Greenbelt,MD:NASA,1999.
[31] Prigent C,Wigneron J P,Rossow W B,et al.Frequency and angular variations of land surface microwave emissivities:Can we estimate SSM /T and AMSU emissivities from SSM /I emissivities[J].IEEE Trans.Geosci.Remote Sens., 2000,38(5):2373-2386.
[32] Zhou L H,Goldberg M,Barnet C,et al.Regression of surface spectral emissivity from hyperspectral instruments[J].IEEE Trans.Geosci.Remote Sens.,2008,46(2):328-333.
[33] Harris B A,Kelly G.A satellite radiance-bias correction scheme for data assimilation[J].The Quarterly Journal of the Royal Meteorological Society,2001,127(574):1453-1468.
[34] 毕宝贵,章国材,李泽椿.2003年淮河洪涝与西太副高异常及成因的关系[J].热带气象学报,2004,20(5):505-514.
[35] Kong F,Xue M,Thomas K,et al,Real-time storm-scale ensemble forecast experiment analysis of 2008 spring experiment data[C].24th Conference on Several Local Storms,Amer Meteor Soc,Savannah,2008.
[37] Lin Y L,Farley R D,Orville H D.Bulk parameterization of the snow field in a cloud model[J].Journal of Climate and Applied Meteorology,1983,22(6):1065-1092.
[38] Tiedtke M.A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models[J].Monthly Weather Review,1989,117(8):1779-1800.
[39] Iacono M J,Delamere J S,Mlawer E J,et al.Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J].Journal of Geophysical Research,2008:13103.
[40] Janjic Z I.The Step-Mountain Eta Coordinate Model-further developments of the convection,viscous sublayer,and turbulence closure schemes[J].Monthly Weather Review,1994,122(5):927.
[41] Tewari M,Chen F,Wang W,et al.Implementation and verification of the unified NOAH land surface model in the WRF model[R].In 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction,2004.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(03):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(03):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(03):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[5]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(03):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[6]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(03):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[7]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[8]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[9]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(03):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[10]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(03):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
备注/Memo
收稿日期:2021-03-23
基金项目:国家自然科学基金面上资助项目(41875039)