WANG Weijia,LI Hongyu.Aerosol Particle Spectra Analysis over Sichuan Basin in September based on Airborne Observation[J].Journal of Chengdu University of Information Technology,2022,37(03):333-343.[doi:10.16836/j.cnki.jcuit.2022.03.014]
基于飞机观测的四川盆地9月气溶胶粒子谱分析
- Title:
- Aerosol Particle Spectra Analysis over Sichuan Basin in September based on Airborne Observation
- 文章编号:
- 2096-1618(2022)03-0333-11
- Keywords:
- aerosol; particle spectra; airborne PMS observation; Sichuan Basin
- 分类号:
- P412.24
- 文献标志码:
- A
- 摘要:
- 基于飞机搭载的PMS(particle measuring system)系列机载粒子探头飞行观测数据的分析,获得了四川盆地尺度0.1~3.0 μm的气溶胶粒子数浓度的垂直分布及不同高度层的气溶胶粒子谱分布,并对粒子谱进行拟合分析。结果表明:四川盆地2010年9月4次飞行观测到的气溶胶粒子平均数浓度分别为210 cm-3、254 cm-3、163 cm-3、260 cm-3,与北京、石家庄飞机观测到的气溶胶数浓度量级相同。各高度上的气溶胶粒子平均直径均在0.13~0.22 μm,说明四川盆地9月气溶胶粒子大多为细粒子,呈现显著的城市工业气溶胶特征。气溶胶粒子谱呈单峰、双峰或三峰分布。总体上,随着海拔高度的增加,气溶胶浓度减小,粒子谱变窄,但高空有云出现时气溶胶浓度会有小幅度增大。四川盆地9月的气溶胶粒子谱满足Junge谱分布,利用三参数尺度谱拟合更接近飞机观测事实,但采用三参数对数正态分布谱拟合效果不好。
- Abstract:
- By using in-situ airborne observation data from PMS(Particle Measuring System)probes, the vertical distribution and the size spectrum distribution at different heights of aerosol particles between 0.1 microns and 3.0 microns over Sichuan Basin in September are analyzed, and the fitting analyzing of the aerosol particle spectra are implemented as well. The results show that, in September, 2010, the mean number concentration of aerosol particles observed during the four flights over Sichuan Basin are 210 cm-3,254 cm-3, 163 cm-3,260 cm-3 respectively, with a magnitude which is the same as that of the aerosols from in-situ airborne observation over Beijing and Shijiazhuang. The mean diameters of aerosol particles at different heights range between 0.13 microns and 0.22 microns, and the majority of the aerosol particles over Sichuan Basin in September are fine particles, demonstrating obvious urban-industry aerosol characteristics. The size spectra of aerosol particles show one peak, two peaks or three peaks. As a whole, the concentration and the spectral width of aerosol particles decrease with altitude. However, when clouds cover at high altitudes, the concentration of aerosols at those altitudes will increase a bit. The aerosol particle spectrum in Sichuan Basin in September satisfies the Junge spectrum distribution, and the fitting of the three-parameter scale spectrum is closer to the facts of airborne observations. But the fitting effect of the three-parameter lognormal distribution spectrum is not good.
参考文献/References:
[1] Coakley J,Jr,Cess D,Yurevich B.The effect of tropospheric aerosols on the earth’s radiation budget:A parameterization for climate models[J].J.Atmos.Sci.,1983,40(1):116-138.
[2] Hansen J,Sato M,Ruedy R.Radiative forcing and climate response[J].J.Geophys.Res.,1997,102(D6):6831-6864.
[3] Rosenfeld D.Suppression of rain and snow by urban and industrialair pollution[J].Science,2000,287(5459):1793-1796.
[4] Teller A,Levin Z.The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model[J].Atmos.Chem.Phys.,2006,6(1):67-80.
[5] 毛节泰,张军华,王美华.中国大气气溶胶研究综述[J].气象学报,2002,60(5):625-634.
[6] 范学花,陈洪滨,夏祥鳌.中国大气气溶胶辐射特性参数的观测与研究进展[J].大气科学,2013,37(2):477-498.
[7] 马新成,毕凯,田海军,等.北京地区沙尘天气气溶胶飞机观测特征[J].气象科技,2016,44(1):95-103.
[8] 范烨,郭学良,付丹红,等.北京及周边地区2004年8、9月间大气气溶胶分布特征观测研究[J].气候与环境研究,2007,12(1):49-62.
[9] 孙霞,银燕,孙玉稳,等.石家庄地区春季晴、霾天气溶胶观测研究[J].中国环境科学,2011,31(5):705-713.
[10] Li J,Li P,Ren G,et al.Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the Eastern Loess Plateau in China[J].Tellus B:Chemical and Physical Meteorology,2019,71:1-18.
[11] Li J,Yin Y,Li P,et al.Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China[J].Atmospheric Research,2015,155:73–86.
[12] 李成才,毛节泰,刘启汉.利用MODIS遥感大气气溶胶及气溶胶产品的应用[J].北京大学学报(自然科学版),2003,39(S):108-117.
[13] 魏强,高建春,钱越英.机载粒子测量系统及资料处理[J].气象,1997,23(5):37-40.
[14] 嵇磊,张蔷,马新成,等.奧运开幕日北京周边云系宏微观结构飞行探测研究[J].气象,2008,34(S1):121-125.
[15] 赵增亮,毛节泰,魏强,等.西北地区春季云系的垂直结构特征飞机观测统计分析[J].气象,2010,36(5):71-77.
[16] 赵增亮,毛节泰,王磊,等.一次典型层积云的飞机观测结果及与卫星资料的对比分析[J].气象学报,2011,69(3):521-527.
[17] 周秀骥,李维亮,罗云峰.中国大气气溶胶辐射强迫及区域气候效应的数值模拟[J].大气科学,1998,22(4):418-427.
[18] 李晓静,张鹏,张兴赢,等.中国区域MODIS陆上气溶胶光学厚度产品检验[J].应用气象学报,2009,20(2):147-156.
[19] 郭丽君,郭学良,方春刚,等.华北一次持续性重度雾霾天气的产生、演变与转化特征观测分析[J].中国科学(地球科学),2015,45(4):427-443.
[20] 邓雪娇,李菲,吴兑,等.广州地区典型清洁与污染过程的大气湍流与物质交换特征[J].中国环境科学,2011,31(9):1424-1430.
[21] Hobbs V,Rangno L.Microstructures of low and middleilevel clouds over the Beaufort Sea[J].Quart.J.Roy.Meteorol.Soc,1998,124(550):2035-2071.
[22] 孙玉稳,孙霞,银燕,等.华北平原中西部地区秋季(10月)气溶胶观测研究[J].高原气象,2013,32(5):1308-1320.
[23] 徐桂荣,崔春光,周志敏,等.利用探空资料估算青藏高原及下游地区大气边界层高度[J].暴雨灾害,2014,33(3):217-227.
[24] 游荣高,任丽新.北京采暖期间和采暖期前大气气溶胶物理特性的对比研究[J].大气科学,1990,14(3):354-363.
[25] 耿蒙.典型地区大气气溶胶谱分布和折射率特征研究[D].合肥:中国科学技术大学,2017.
备注/Memo
收稿日期:2020-11-04
基金项目:四川省科技计划资助项目(2019YJ0621); 中国气象局云雾物理环境重点实验室开放课题资助项目(2017Z01610)