PDF下载 分享
[1]相博镪,凌味未,李 蠡,等.基于FPGA的RNN硬件加速架构[J].成都信息工程大学学报,2022,37(04):374-378.[doi:10.16836/j.cnki.jcuit.2022.04.002]
 XIANG Boqiang,LING Weiwei,LI Li,et al.FPGA-based Hardware Accelerator for RNN[J].Journal of Chengdu University of Information Technology,2022,37(04):374-378.[doi:10.16836/j.cnki.jcuit.2022.04.002]
点击复制

基于FPGA的RNN硬件加速架构

参考文献/References:

[1] Nurvitadhi E,Sim J,Sheffield D,et al.Accelerating recurrent neural networks in analytics servers:Comparison of FPGA,CPU,GPU,and ASIC[C].International Conference on Field Programmable Logic & Applications.IEEE,2016.
[2] Rybalkin V,Wehn N,Yousefi M R,et al.Hardware architecture of Bidirectional Long Short-Term Memory Neural Network for Optical Character Recognition[C].2017 Design,Automation & Test in Europe Conference & Exhibition(DATE).IEEE,2017.
[3] Han S,Kang J,Mao H,et al.Ese:Efficient speech recognition engine with sparse lstm on fpga[C].Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,2017:75-84.
[4] 邓良,陈章进,乔栋,等.基于FPGA的指令集架构神经网络协处理器的设计与验证[J].小型微型计算机系统,2021,42(6):1129-1135.
[5] Guan Y,Yuan Z,Sun G,et al.FPGA-based accelerator for long short-term memory recurrent neural networks[C].2017 22nd Asia and South Pacific Design Automation Conference(ASP-DAC).IEEE,2017.
[6] 高琛,张帆.基于FPGA的递归神经网络加速器的研究进展[J].网络与信息安全学报,2019,5(4):1-13.
[7] Yu J,Hu Y,Ning X,et al.Instruction driven cross-layer CNN accelerator with winograd transformation on FPGA[C].2017 International Conference on Field Programmable Technology(ICFPT),2018.
[8] Sun Z,Zhu Y,Zheng Y,et al.FPGA acceleration of LSTM based on data for test flight[C].2018 IEEE International Conference on Smart Cloud(SmartCloud).IEEE,2018:1-6.
[9] 范军,巩杰,吴茜凤,等.基于FPGA的RNN加速SoC设计与实现[J].微电子学与计算机,2020,37(11):1-5.
[10] Han S,Mao H,Dally W J.Deep Compression:Compressing Deep Neural Networks with Pruning,Trained Quantization and Huffman Coding[J].Fiber,2015,56(4):3-7.
[11] Lee M,Hwang K,Park J,et al.FPGA-Based Low-Power Speech Recognition with Recurrent Neural Networks[C].2016 IEEE International Workshop on Signal Processing Systems(SiPS).IEEE,2016.
[12] Song H,Mao H,Dally W J.Deep Compression:Compressing Deep Neural Networks with Pruning,Trained Quantization and Huffman Coding[C].ICLR,2016.
[13] 彭井桐,祝永新,汪辉,等.基于FPGA的GRU神经网络飞行数据异常检测[J].微电子学与计算机,2021,38(11).

相似文献/References:

[1]谢蓉芳,李子夫,叶 松.纠错模式可配置的NAND Flash BCH译码器设计[J].成都信息工程大学学报,2018,(04):353.[doi:10.16836/j.cnki.jcuit.2018.04.001]
 XIE Rong-fang,LI Zi-fu,YE Song.Design of Mode Configurable NAND Flash BCH Decoder[J].Journal of Chengdu University of Information Technology,2018,(04):353.[doi:10.16836/j.cnki.jcuit.2018.04.001]

备注/Memo

收稿日期:2021-11-03
基金项目:国家自然科学基金资助项目(61201094)

更新日期/Last Update: 2022-08-30