ZENG Jian,ZHANG Qiang,ZHANG Yu,et al.The Characteristics of Aerodynamic Aoughness Length of Alpine Meadows on the Qinghai-Tibet Plateau[J].Journal of Chengdu University of Information Technology,2022,37(04):429-434.[doi:10.16836/j.cnki.jcuit.2022.04.011]
青藏高原高寒草甸的空气动力学粗糙度特征
- Title:
- The Characteristics of Aerodynamic Aoughness Length of Alpine Meadows on the Qinghai-Tibet Plateau
- 文章编号:
- 2096-1618(2022)04-0429-06
- Keywords:
- atmospheric physics; atmospheric boundary layer; aerodynamic roughness length; atmospheric dynamic factors; characteristic; alpine meadows; Qinghai-Tibet Plateau
- 分类号:
- P404
- 文献标志码:
- A
- 摘要:
- 为认识高寒草甸下垫面的空气动力学粗糙度特征,利用阿柔冻融站的夏季观测资料,通过两种方法计算青藏高原高寒草甸的空气动力学粗糙度,并分析空气动力学粗糙度的日演变特征,探讨空气动力学粗糙度与大气动力因素之间的关系。结果显示,阿柔高寒草甸的夏季平均动力学粗糙度为0.026 m,白天和夜间的动力学粗糙度分别为0.033 m、0.019 m。从平均的日演变看,动力学粗糙度表现出明显的单峰型演变特征,峰值出现在中午至下午时段,这与大气动力特征的日变化密切相关。其次,动力学粗糙度线性相关于摩擦速度u*,但两者的相关性受到风速u的影响,u越大则两者的线性关系越强,并且两者的拟合关系在高风速区间(3~6 m/s)保持较高的稳定性。而标准化变量u/u*与动力学粗糙度之间存在负指数拟合关系,u/u*与动力学粗糙度的关系相比于u或u*更加稳定,并且u/u*解释了空气动力学粗糙度60%左右的变化,可用于空气动力学粗糙度的参数化研究。
- Abstract:
- In order to understand the characteristics of aerodynamic roughness length of the underlying surface of alpine meadow, this paper uses two methods to calculate the aerodynamic roughness length of the Alpine Meadow over the Qinghai-Tibet Plateau based on the summer observations from the Arou freezing-thawing observation site. The diurnal evolution characteristic of aerodynamic roughness length is analyzed and the relationships are explored between aerodynamic roughness length and atmospheric dynamic factors. The results show that the summer average aerodynamic roughness length of Arou Alpine Meadow is 0.026 m, and the average values for daytime and night are 0.033 m and 0.019 m, respectively. In terms of the average diurnal evolution, the aerodynamic roughness length shows obvious unimodal characteristic, with the peak appearing during the noon and afternoon, which is closely related to the diurnal variation of atmospheric dynamics. Secondly, the correlation between aerodynamic roughness length and friction speed u* is related to wind speed u. The larger the u is, the stronger the linear relationship between the two is, and the fitting relationship between the two is stable in the higher wind speed range(3-6 m/s). But the standardized variable u/u* is negative exponentially related to aerodynamic roughness length, and the relationship between u/u* and dynamic roughness is more stable than u or u*, u/u* can explain about 60% of the change in aerodynamic roughness length, and can be used for parameterization.
参考文献/References:
[1] Stull R B.边界层气象导论[M].杨长新,译.北京:气象出版社,1991:719.
[2] 张强,胡隐樵.边界层气象学的研究进展和面临的主要科学问题[J].地球科学进展,2001,16:526-532.
[3] Zhang Q,Zeng J,Yao T.Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface[J].Chinese Science Bulletin,2012(13):97-105.
[4] 梅凡民,Rajot J,Alfaro S,等.平坦沙地的空气动力学粗糙度变化及其物理意义[J].自然科学进展,2006,16:325-330.
[5] 张强,王胜,张杰,等.干旱区陆面过程和大气边界层研究进展[J].地球科学进展,2009,24:1185-1194.
[6] Garratt J.The Atmospheric Boundary Layer[M].Cambridge,UK:Cambridge University Press,1992.
[7] Monin A,Obukhov A.Basic laws of turbulence mixing in the surface layer of the atmosphere[J].Trudy Geofiz Inst Akad Nauk SSSR,1954,24:163-187.
[8] 陈家宜,王介民,光田宁.一种确定地表粗糙度的独立方法[J].大气科学,1993,17:21-26.
[9] 张强,吕世华.城市表面粗糙度长度的确定[J].高原气象,2003,22(1):24-32.
[10] 张强,姚彤,岳平.一个平坦低矮植被陆面动力学粗糙度多因子参数化方案及其检验[J].中国科学:地球科学,2015,45(11):113-127.
[11] 李宏宇,张强,史晋森,等.黄土高原自然植被下垫面陆面过程参数研究[J].气象学报,2012,70(5):1137-1148.
[12] 周艳莲,孙晓敏,朱治林,等.几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响[J].中国科学D辑:地球科学,2006,36:244-254.
[13] Kang L,Han X,Zhang Z,et al.Grassland ecosystems in China:review of current knowledge and research advancement[J].Philosophical Transactions of the Royal Society of London,2007,362(1482):997-1008.
[14] 旦增塔庆,旭日,魏学红,等.西藏纳木错高寒草原,高寒草甸和沼泽化草甸主要温室气体通量对比研究[J].草地学报,2014,22(3):493-493.
[15] 中国科学院《中国植被图》编辑委员会.1:1000000中国植被图集[M].北京:科学出版社,2001.
[16] 孙鸿烈.青藏高原的形成演化[M].上海:上海科学技术出版社,1996:100-193.
[17] 吕宪国.中国湿地与湿地研究[M].石家庄:河北科学技术出版社,2008.
[18] Wang H,Jia G,Fu C,et al.deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling[J].Remote Sensing of Environment,2010,114:2248-2258.
[19] 王海波,马明国,王旭峰,等.青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素[J].干旱区资源与环境,2014,28(6):50-56.
[20] 尚伦宇,吕世华,张宇,等.青藏高原东部土壤冻融过程中地表粗糙度的确定[J].高原气象,2010(1):17-22.
[21] 皮尔克.中尺度气象模拟[M].北京:气象出版社,1990:676.
[22] 李国平,段廷扬,巩远发.青藏高原西部地区的总体输送系数和地面通量[J].科学通报,2000,45(8):865-869.
[23] 鞠英芹,刘寿东,马德栗,等.农田与草地下垫面空气动力学粗糙度的研究[J].科技通报,2016,32(8):5-11.
[24] Wieringa J.Updating the Davenport roughness classification[J].Journal of Wind Engineering & Industrial Aerodynamics,1992,41(1-3):357-368.
相似文献/References:
[1]李培荣,向卫国.四川盆地逆温层特征对空气污染的影响[J].成都信息工程大学学报,2018,(02):220.[doi:10.16836/j.cnki.jcuit.2018.02.018]
LI Pei-rong,XIANG Wei-guo.Influence of Inversion Layer Characteristics in Sichuan Basin on Air Pollution[J].Journal of Chengdu University of Information Technology,2018,(04):220.[doi:10.16836/j.cnki.jcuit.2018.02.018]
[2]谭 天,肖 辉,孙 跃,等.北京地区雷暴云微物理结构数值模拟
及其与双偏振雷达观测对比[J].成都信息工程大学学报,2017,(04):409.[doi:10.16836/j.cnki.jcuit.2017.04.011]
TAN Tian,XIAO Hui,SUN Yue,et al.Numerical Simulation of Microphysical Structures of a Severe Thunderstorm
in Beijing and their Comparisons with Polarimetric Radar Observations[J].Journal of Chengdu University of Information Technology,2017,(04):409.[doi:10.16836/j.cnki.jcuit.2017.04.011]
[3]李思盟,蔺诗颖,陈南西,等.逆温层对成都地区雾霾影响的研究[J].成都信息工程大学学报,2020,35(01):79.[doi:10.16836/j.cnki.jcuit.2020.01.011]
LI Simeng,LIN Shiying,CHEN Nanxi,et al.Research of the Influence of Inversion Layer on Haze over Chengdu[J].Journal of Chengdu University of Information Technology,2020,35(04):79.[doi:10.16836/j.cnki.jcuit.2020.01.011]
[4]于建宇,李茂善,阴蜀城,等.青藏高原那曲地区云降水微观特征雨滴谱分析[J].成都信息工程大学学报,2020,35(02):188.[doi:10.16836/j.cnki.jcuit.2020.02.010]
YU Jianyu,LI Maoshan,YIN Shucheng,et al.Analysis of Cloud Precipitation Microscopic Characteristic Raindrop Spectrum in Nagqu Area of Qinghai-Tibet Plateau[J].Journal of Chengdu University of Information Technology,2020,35(04):188.[doi:10.16836/j.cnki.jcuit.2020.02.010]
备注/Memo
收稿日期:2021-08-01
基金项目:国家自然科学基金资助项目(42005071); 干旱气象科学研究基金资助项目(IAM202101)