PDF下载 分享
[1]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615-621.[doi:10.16836/j.cnki.jcuit.2022.06.001]
 GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(06):615-621.[doi:10.16836/j.cnki.jcuit.2022.06.001]
点击复制

基于元学习的僵尸网络检测研究

参考文献/References:

[1] 冯贵兰,李正楠,周文刚.大数据分析技术在网络领域中的研究综述[J].计算机科学,2019,46(6):1-20.
[2] 张蕾,李井泉,曲武,等.基于SparkStreaming的僵尸主机检测算法[J].计算机应用研究,2016,33(5):1497-1503.
[3] 姜建国,王继志,孔斌,等.网络攻击源追踪技术研究综述[J].信息安全学报,2018,3(1):111-131.
[4] 高见,王安.面向网络攻击的能力评估分类体系研究[J].计算机应用研究,2020,37(8):2449-2454.
[5] 周昌令,陈恺,公绪晓,等.基于Passive DNS的速变域名检测[J].北京大学学报(自然科学版),2016,52(3):396-402.
[6] Khan R U,Zhang X,Kumar R,et al.An adaptive multi-layer botnet detection technique using machine learning classifiers[J].Applied Sciences,2019,9(11):2375.
[7] McDermott C D,Majdani F,Petrovski A V.Botnet detection in the internet of things using deep learning approaches[C].2018 international joint conference on neural networks(IJCNN).IEEE,2018:1-8.
[8] Chen S C,Chen Y R,Tzeng W G.Effective botnet detection through neural networks on convolutional features[C].2018 17th IEEE International Conference On Trust,Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE).IEEE,2018:372-378.
[9] 牛伟纳,蒋天宇,张小松,等.基于流量时空特征的fast-flux僵尸网络检测方法[J].电子与信息学报,2020,42(8):1872-1880.
[10] Hospedales T,Antoniou A,Micaelli P,et al.Meta-learning in neural networks:A survey[J].arXiv preprint arXiv:2004.05439, 2020.
[11] Huisman M,Van Rijn J N,Plaat A. A survey of deep meta-learning[J].Artificial Intelligence Review,2021:1-59.
[12] Peng H.A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[J].arXiv preprint arXiv:2004.11149,2020.
[13] Koch G,Zemel R,Salakhutdinov R.Siamese neural networks for one-shot image recognition[C].ICML deep learning workshop,2015.
[14] Snell J,Swersky K,Zemel R.Prototypical networks for few-shot learning[J].Advances in neural information processing systems,2017,30.
[15] Sung F,Yang Y,Zhang L,et al.Learning to compare: Relation network for few-shot learning[C].Proceedings of the IEEE conference on computer vision and pattern recognition,2018:1199-1208.
[16] Vinyals O,Blundell C,Lillicrap T,et al.Matching networks for one shot learning[J].Advances in neural information processing systems,2016,29.
[17] Ji Y,Zhang H,Wu Q J.Salient Object Detection via Multi-Scale Attention CNN[J].Neurocomputing,2018,322(17):130-140.
[18] 刘颖,雷研博,范九伦,等.基于小样本学习的图像分类技术综述[J].自动化学报,2021,47(2):19.
[19] Ren M,Liao R,Fetaya E,et al.Incremental few-shot learning with attention attractor networks[J].Advances in Neural Information Processing Systems,2019,32.
[20] Gao T,Han X,Liu Z,et al.Hybrid attention-based prototypical networks for noisy few-shot relation classification[C].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):6407-6414.
[21] Wu Z,Li Y,Guo L,et al.PARN:Position-aware relation networks for few-shot learning[C].Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6659-6667.
[22] Wang X,Girshick R,Gupta A,et al.Non-local neural networks[C].Proceedings of the IEEE conference on computer vision and pattern recognition,2018:7794-7803.
[23] 王伟.基于深度学习的网络流量分类及异常检测方法研究[D].安徽:中国科学技术大学,2018.
[24] Saad S,I Traoré,Ghorbani A A,et al.Detecting P2P botnets through network behavior analysis and machine learning[C].Ninth International Conference on Privacy.IEEE,2011.
[25] Garcia S,Grill M,Stiborek J,et al.An empirical comparison of botnet detection methods[J].computers & security,2014,45:100-123.
[26] Ahmed A A.Botnet Detection Using a Feed-Forward Backpropagation Artificial Neural Network[C].International Conference on Computational Intelligence in Information System.Springer,Cham,2018:24-35.
[27] Nugraha B,Nambiar A,Bauschert T.Performance Evaluation of Botnet Detection using Deep Learning Techniques[C].2020 11th International Conference on Network of the Future(NoF).IEEE,2020:141-149.

相似文献/References:

[1]卢 丽,许源平,卢 军,等.基于社会力异常检测改进算法的人群行为模型[J].成都信息工程大学学报,2018,(01):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
 LU Li,XU Yuan-ping,LU Jun,et al.A Crowd Behavior Model based on an ImprovedSocial Force Anomaly Detection Algorithm[J].Journal of Chengdu University of Information Technology,2018,(06):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
[2]胡 婕,陶宏才.基于深度学习的领域问答系统的设计与实现[J].成都信息工程大学学报,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
 HU Jie,TAO Hongcai.Design and Implementation of Domain Question Answering System based on Deep Learning[J].Journal of Chengdu University of Information Technology,2019,(06):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(06):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]冉元波,孙 敏,高梦清,等.双偏振天气雷达水凝物识别研究[J].成都信息工程大学学报,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
 RAN Yuan-bo,SUN Min,GAO Meng-qing,et al.Study on Hydrometeor Identification based on Deep Learning[J].Journal of Chengdu University of Information Technology,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
[5]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
 ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(06):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[6]谭诗雨,杨 玲,师春香,等.复杂背景下银行卡号识别方法研究[J].成都信息工程大学学报,2021,36(03):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
 TAN Shiyu,YANG Ling,SHI Chunxiang,et al.Bank Card Number Recognition System under the Complex Background based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(06):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
[7]李 静,鲜 林,王海江.基于YOLOv3的船只检测算法研究[J].成都信息工程大学学报,2023,38(01):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
 LI Jing,XIAN Lin,WANG Haijiang.Research on Ship Detection Algorithm based on YOLOv3[J].Journal of Chengdu University of Information Technology,2023,38(06):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
[8]毛 波,杨 昊,周世杰,等.基于CMA-REPS格点预报数据的深度学习风速订正方法[J].成都信息工程大学学报,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
 MAO Bo,YANG Hao,ZHOU Shijie,et al.A Deep Learning Method for Wind Speed Grid Point Forecasting Data Correction based on CMA-REPS[J].Journal of Chengdu University of Information Technology,2023,38(06):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
[9]任不凡,黄小燕,吴思东,等.基于语义信息的三维点云全景分割方法研究[J].成都信息工程大学学报,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
 REN Bufan,HUANG Xiaoyan,WU Sidong,et al.Research on Panoptic Segmentation of 3D Point Clouds based on Semantic Information[J].Journal of Chengdu University of Information Technology,2023,38(06):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
[10]张卓然,张 倩,宋 智,等.基于残差Swin Transformer的天气图像识别技术研究[J].成都信息工程大学学报,2023,38(06):637.[doi:10.16836/j.cnki.jcuit.2023.06.003]
 ZHANG Zhuoran,ZHANG Qian,SONG Zhi,et al.Research on Weather Image Recognition based on Residual Swin Transformer[J].Journal of Chengdu University of Information Technology,2023,38(06):637.[doi:10.16836/j.cnki.jcuit.2023.06.003]

备注/Memo

收稿日期:2022-01-11
基金项目:网络空间安全态势感知与评估安徽省重点实验室开放课题资助项目(CSSAE-2021-002)

更新日期/Last Update: 2022-12-30