CHEN Yuan,DONG Dandan,SHEN Biao,et al.Daily Rainfall Data Fusion Method and its Error Analysis in Dadu River Basin[J].Journal of Chengdu University of Information Technology,2022,37(06):683-689.[doi:10.16836/j.cnki.jcuit.2022.06.011]
大渡河流域逐日降雨数据融合的误差分析
- Title:
- Daily Rainfall Data Fusion Method and its Error Analysis in Dadu River Basin
- 文章编号:
- 2096-1618(2022)06-0683-07
- Keywords:
- meteorology; meteorological data processing method; data fusion method; rainfall distribution characteristics; Dadu River Basin
- 分类号:
- P426.6
- 文献标志码:
- A
- 摘要:
- 为有效结合不同来源降雨资料的优势,发展多源降雨融合技术,采用数据融合方法,生成融合逐日降雨数据(以下称为Grid数据),再与气象观测站点资料、ERA5和NCEP2格点资料进行误差对比,探讨Grid数据在大渡河流域的适用性。结果表明:(1)Grid数据基本能完整展示大渡河流域的日均降雨分布,总体的、各区域内的降雨分布与观测数据展示出的分布规律基本吻合;(2)从插值站点来看,Grid数据的降雨量量级与观测数据差距小,总体的、各区域内的最大降雨量和最小降雨量与观测数据接近,表现优于ERA5和NCEP2数据;(3)从标准差、均方根误差来看,Grid数据的误差要明显小于EAR5和NCEP2数据;(4)从2008-2018年全流域、1~4分区的面雨量时间序列来看,Grid数据与观测数据较ERA5和NCEP2数据更接近。综上,Grid融合数据能较好地反映大渡河流域实际降雨情况。
- Abstract:
- In order to effectively combine the advantages of rainfall data from different sources, and develop multi-source rainfall fusion technology, this paper uses data fusion method to generate fused daily rainfall data(hereinafter referred to as Grid data).Then, compare and analyze the error with meteorological station data, ERA5 data and NCEP2 data, in order to explore the applicability of the Grid data in Dadu River Basin. Conclusions:(1)The daily average precipitation distribution of Dadu River basin can be completely displayed by the Grid data.On the overall and within regions, and the precipitation distribution is basically consistent with the precipitation displayed by the meteorological observation data.(2)From the perspective of interpolation to stations, the difference between the rainfall magnitude of the Grid data and the observation data is small, and the overall maximum and minimum rainfall in each region are close to the observation data, which is better than the ERA5 and NCEP2 data;(3)From the standard deviation and the root mean square error, the Grid data is better than ERA5 data and NCEP2 data.(4)From the area rainfall time series of the whole basin and 1-4 divisions,Grid data is closer to observational data than ERA5 and NCEP2 data. In a word, the daily rainfall Grid data can better reflect the actual precipitation of Dadu River Basin.
参考文献/References:
[1] 张海鹏,智协飞,吉璐莹.中国区域降雨偏差订正的初步研究[J].气象科学,2020,40(4):467-474.
[2] 曹越,赵琳娜,巩远发,等.ECMWF高分辨率模式降雨预报能力评估与误差分析[J].暴雨灾害,2019,38(3):249-258.
[3] 潘旸,谷军霞,徐宾,等.多源降雨数据融合研究及应用进展[J].气象科技进展,2018,8(1):143-152.
[4] 吴启树,韩美,刘铭,等.基于评分最优化的模式降雨预报订正算法对比[J].应用气象学,2017,28(3):306-317.
[5] 张海鹏,智协飞,吉璐莹.中国区域降雨偏差订正的初步研究[J].气象科学,2020,40(4):467-474.
[6] He J,Yang K,Tang,W,et al.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data,2020,7(1):1-11.
[7] 师春香,潘旸,谷军霞,等.多源气象数据融合格点实况产品研制进展[J].气象学报,2019,77(4):774-783.
[8] 李超,唐千红,陈宇,等.多源数据融合系统LAPS的研究进展及其在实况数据服务中的应用[J].气象科技进展,2017,7(2):32-38.
[9] Yang K,He,J,Tang W,et al.On downward shortwave and longwave radiations over high altitude regions:Observation and modeling in the Tibetan Plateau[J].Agricultural and Forest Meteorology,2020,150(1):38-46.
[10] Yang K,Chen Y,He J,et al.Development of a daily soil moisture product for the period of 2002-2011 in Mainland China[J].Science China Earth Sciences,2020,63:1-13.
[11] 赵旋,李耀辉,齐冬梅.1961-2007年四川夏季降雨的时空变化特征[J].冰川冻土,2013,35(4):959-967.
[12] 王颖,李栋梁.变暖背景下青藏高原夏季风变异及其对中国西南气候的影响[J].气象学报,2015,73(5):15.
[13] 殷志强,孟晖,连建发,等.基于不同时间尺度的地质灾害对气候变化响应研究[J].地质论评,2013,59(6):1110-1116.
[14] 孙莉英,葛浩,庞占龙,等.长江流域不同类型山洪灾害受自然因素影响分析[J].人民长江,2016,47(14):1-6.
[15] 郭洁,宋雯雯,郑昊,等.大渡河流域面雨量时空分布特征及雨季转换指标[J].干旱气象,2019,37(3):370-376.
[16] 李艳,张倩倩,陈鲜艳.大渡河流域水电开发对区域气候的可能影响[J].2017,40(1):90-99.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(06):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(06):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(06):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(06):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(06):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(06):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(06):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(06):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(06):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(06):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
备注/Memo
收稿日期:2021-11-24
基金项目:国家重点研发计划资助项目(2021YFC3000902-3); 国家自然科学基金面上资助项目(42075087); 国家自然科学基金区域创新发展联合基金资助项目(U20A2097)