YIN Guoqing,YU You,SHEN Yanjiang,et al.First-principles Study of Electronic and Elastic Properties of SnX(X=S, Se, Te)[J].Journal of Chengdu University of Information Technology,2022,37(06):721-726.[doi:10.16836/j.cnki.jcuit.2022.06.016]
热电材料SnX(X = S, Se, Te)的电子结构和弹性性质的第一性原理研究
- Title:
- First-principles Study of Electronic and Elastic Properties of SnX(X=S, Se, Te)
- 文章编号:
- 2096-1618(2022)06-0721-06
- Keywords:
- first principles; thermoelectric materials; monolayer structure; electronic properties; elasticity
- 分类号:
- O472+.91
- 文献标志码:
- A
- 摘要:
- 采用基于密度泛函理论的第一性原理方法研究了热电材料SnX(X = S, Se, Te)的单层和块体结构的电子性质,并对块体结构SnX的弹性性质进行计算和分析,计算结果与文献中理论和实验结果相符。通过对能带和态密度的计算,发现单层和块体结构的SnX均为间接带隙半导体,带隙均随着X原子序数的增大而减小。根据计算得到的块体结构的弹性常数Cij、体弹模量B和剪切模量G等值,发现SnX是力学稳定的,且它们都表现出脆性,并由弹性各向异性因子得到SnX具有弹性各向异性。
- Abstract:
- First-principles methods based on density functional theory are used to research the electronic properties of the monolayer and bulk structures of the thermoelectric material SnX(X=S,Se,Te), and the elastic properties of the bulk structure SnX are calculated and analyzed. The calculated results are consistent with the reported theoretical or experimental results. Through the calculation of energy band and density of states, it is found that SnX with monolayer and bulk structure are indirect band gap semiconductors, and the band gap decreases with the increase of the atomic number of X. According to the calculated values of elastic constantCij, bulk elastic modulus B and shear modulus G of the bulk structure, it is found that SnX is mechanically stable,and they all exhibit brittleness. The elastic anisotropy factor shows that SnX has elastic anisotropy.
参考文献/References:
[1] Zhou T,Du JY,Wang C,et al.Chemical doping of the SnSe monolayer:a first-principle calculation[J].Physical Chemistry Chemical Physics,2019,21(27):14629-14637.
[2] Guo H,Jiang WT,She Q Q,et al.SnTe monolayer:Tuning its electronic properties with doping[J].Superlattices and Microstructures,2019,130:12-19.
[3] Pei Y Z,Shi X Y,Lalonde A,et al.Convergence of electronic bands for high performance bulk thermoelectrics[J].Nature,2011,473(7345):66-69.
[4] Bhat D K,Sandhya S U.High thermoelectric performance of co-doped tin telluride due to synergistic effect of magnesium and indium[J].Journal of Physical Chemistry C,2017,121(13):7123-7130.
[5] Zhou J,Wang Q,Sun Q,et al.Ferromagnetism in semihydrogenated graphene sheet[J].Nano Letters 2009,9(11):3867-3870.
[6] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[7] Novoselov K S,Fal’ko V I,Colombo L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
[8] Zhuang H L,Hennig R G.Single-layer group-III monochalcogenide photocatalysts for water splitting[J].Chemistry of Materials,2013,25(15):3232-3238.
[9] Parr R G.Density functional theory[J].Annual Review of Physical Chemistry,1983,34(1):631-656.
[10] Wang X M,Jones A M,Seyler K L,et al.Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology,2015,10(6):517-521.
[11] Perdew J P,Yue W.Pair-distribution function and its coupling-constant average for the spin-polarized electron gas[J].Physical Review B,1992,46(20):12947-12954.
[12] Perdew J P,Chevary J A,Vosko S H,et al.Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B,1992,46(11):6671-6687.
[13] Zhou D,Li Q,Ma YM.Unraveling convoluted structural transitions in SnTe at high pressure[J].Journal of Physical Chemistry C,2013,117(10):5352-5357.
[14] Li Y,Wu M N,Ding T,et al.Promising thermoelectric properties and anisotropic electrical and thermal transport of monolayer SnTe[J].Applied Physics Letters,2019,114(8):083901(1-5).
[15] Wiedemeier H,Georg H,Schnering G V.Refinement of the structures of GeS,GeSe,SnS and SnSe[J].Zeitschrift für Kristallographie - New Crystal Structures,1978,148(3-4):295-303.
[16] Guo S D,Wang Y H.Thermoelectric properties of orthorhombic group IV-VI monolayers from the first-principles calculations[J].Journal of Applied Physics,2017,121(3):034302(1-7).
[17] Gomes L C,Carvalho A.Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure[J].Physical Review B:covering condensed matter and materials physics,2015,92(8):085406(1-8).
[18] Xu L,Yang M,Wang S J,et al.Electronic and optical properties of the monolayer group-IV monochalcogenides MX(M=Ge,Sn; X=S,Se,Te)[J].Physical review B,2017,95(23):235434(1-9).
[19] Li G D,Aydemir U,Wood M,et al.Ideal strength and deformation mechanism in high-efficiency thermoelectric SnSe[J].Chemistry of Materials,2017,29(5):2382-2389.
[20] Eisenmann B,Schäfer H.SeTm-TeU[M].Germany: Springer-Verlag,1986:406-419.
[21] Singh A K,Hennig R G.Computational prediction of two-dimensional group-IV mono-chalcogenides[J].Applied Physics Letters,2014,105(4):042103(1-4).
[22] Liu C M,Xu C,Duan M Y.Structural,thermodynamic,tlastic,and tlectronic properties of α-SnS at high pressure from first-principles investigations[J].Zeitschrift für Naturforschung A,2015,70(11):949-960.
[23] Wan W h,Liu C,Xiao W D,et al.Promising ferroelectricity in 2D group IV tellurides: a first-principles study[J].Applied Physics Letters,2017,111(13):132904(1-5).
[24] He X C,Shen H L,Wang W.The mechanical and thermo-physical properties and electronic structures of SnS and SnSe in orthorhombic structure[J].Journal of Alloys and Compounds,2013,556:86-93.
[25] Littlewood P B.The crystal structure of IV-VI compounds.I.Classification and description[J].Journal of Physics C:Solid State Physics,1980,13(26):4855-4873.
[26] Huang L,Wu F G,Li J B.Structural anisotropy results in strain-tunable electronic and optical properties in monolayer GeX and SnX(X=S,Se,Te)[J].Journal of Chemical Physics,2016,144(11):114708(1-7).
[27] Parenteau M,Carlone C.Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors[J].Physical Review B,1990,41(8):5227-5234.
[28] Zhou D,Li Q,Ma Y M,et al.Pressure-induced superconductivity in SnTe: a first-principles study[J].Journal of Physical Chemistry C,2013,117(23):12266-12271.
[29] Gladden J R,Li G,Adebisi R,et al.High-temperature elastic moduli of bulk nanostructured n- and p-type silicon germanium[J].Physical Review B,2010,82(4):2101-2112.
[30] Mouhat F,Coudert F X.Necessary and sufficient elastic stability conditions in various crystal systems[J].Physical Review B,2014,90(22):224104(1-4).
[31] Ravindran P,Fast L,Korzhavyi P A,et al.Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals:Application to TiSi2[J].Journal of Applied Physics,1998,84(9):4891-4904.
[32] Voigt W.Lehrbuch der kristallphysik:(mitAusschluss der Kristalloptik)[M].Wiesbaden:Vieweg+Teubner Verlag,1928:560-800.
[33] Reuss A.Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J].ZAMM - Zeitschrift für AngewandteMathematik und Mechanik,1929,9(1):49-58.
[34] Hill R.The elastic behaviour of a crystalline aggregate[J].Proceedings of the Physical Society.Section A,1952,65(5):349-354.
[35] Pugh S F.XCII.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J].Philosophical Magazine,1954,45(367):823-843.
[36] Frantsevich I N,VoronovF F,Bokuta S A.Elastic Constants and Elastic Moduli of Metals and Insulators Handbook[M]. Naukova Dumka:Kiev,Ukraine,1983:60-180.
[37] Ravindran P,Fast L,Korzhavyi P A,et al.Density functional theory for calculation of elastic properties of orthorhombic crystals:Application to TiSi2[J].Journal of Applied Physics,1998,84(9):4891-4904.
备注/Memo
收稿日期:2021-11-24
基金项目:国家自然科学基金资助项目(11904037)