ZHOU Zhengbin,ZHANG Yidan,LUO Kun,et al.Analysis of Wind Resources in Southwest China based on High-resolution Reanalysis Data[J].Journal of Chengdu University of Information Technology,2023,38(01):75-82.[doi:10.16836/j.cnki.jcuit.2023.01.012]
基于高分辨率再分析资料的西南地区风资源特征分析
- Title:
- Analysis of Wind Resources in Southwest China based on High-resolution Reanalysis Data
- 文章编号:
- 2096-1618(2023)01-0075-08
- Keywords:
- meteorology; wind power meteorology; Southwest China; ERA5 reanalysis; wind resource characteristics
- 分类号:
- P425
- 文献标志码:
- A
- 摘要:
- 为评估高分辨率再分析近地层风速资料在西南地区的适用性,得到西南地区风资源基本时空分布特征,采用2015-2019年欧洲中期数值天气预报中心ERA5再分析资料和西南地区42个气象台站逐日10 m风速观测资料,利用幂律推导、误差分析和双参数Weibull概率分布等方法对ERA5再分析资料在西南地区的适用性以及西南地区风能资源时空分布特征进行分析。结果表明:尽管ERA5再分析资料整体上对西南地区近地面风速有所低估,但区域平均偏差仅为0.27 m/s,多数地区再分析资料与气象台站实测10 m风速之间存在较好的相关性,风速概率拟合也具有较好的一致性,表明ERA5再分析资料可用于西南地区风资源分析。西南地区风速概率分布也存在明显的地域差异,其中四川盆地与周边山地交界地区弱风累积概率明显高于四川盆地、贵州大部、川西高原西北部和云南中东部。同时,西南地区大部分区域风资源较为匮乏,但云南中部和川西北高原属风资源可利用区,其平均风速、最大概率风速、风能最大风速、风功率密度和年有效风时数等风能指标相对其他区域更优。
- Abstract:
- In order to evaluate the applicability of high-resolution reanalysis near-ground wind speed data in Southwest China and obtain the basic temporal and spatial distribution characteristics of wind resources in Southwest China, based on the ERA5 reanalysis data of European medium-range numerical Weather Forecast Center from 2015 to 2019 and the daily wind speed observation data of 42 meteorological stations in Southwest China, it is studied by means of power law derivation, error analysis and two-parameter Weibull probability distribution. In response to the problem that reanalysis data is rarely applied in wind resource assessment in the southwest China. The characteristics of the 100 m wind resources of southwest China were assessed using power-lawerror analysis, and two-parameter Weibull probability distribution based on ERA5 hourly reanalysis and daily observed wind speed of meteorological stations. The results show that although the ERA5 reanalysis data underestimate the near-surface wind speed in southwest China as a whole, the regional average deviation is only 0.27 m/s. There is a good correlation between the reanalysis data of most areas and the wind speed of 10 m measured by meteorological stations, and the probability fitting of wind speed is also in good agreement, indicating that the ERA5 reanalysis data can be used to analyze the wind resources in southwest China.the regional average deviation between ERA5 and the measured wind speed of meteorological stations is only 0.273m/s, the correlation coefficient exceeds 0.4 in more than 67.7% between the observation and ERA5,and the RMSE is small at most stations. On the other hand, the wind speed probability distribution is good agreement between the reanalysis data and observation, ERA5 can be used for southwest wind resource assesment. The spatial distribution of Weibull shape and scale indicate the probability distribution of wind speed is significant differences in southwest China, the cumulative probability of small wind speed in Sichuan Basin to high-altitude transition area is larger than that in Sichuan Basin, most area of Guizhou, Hengduan Mountain and central and eastern Yunnan. In addition, the average wind speed, maximum probable wind speed, the speed of maximum wind energy, wind power density and annual effective hours of wind speed show that wind resources are scarce in most areas of southwest China, but the Yunnan-Guizhou Plateau and the northwestern part of the Sichuan-Western Plateau are wind resource-available areas.
参考文献/References:
[1] 邢婷,郑有飞,朱勇,等.云南风能资源及其开发利用研究进展[J].气象与环境科学,2013,36(4):55-61.
[2] 钟燕川,马振峰,郭海燕,等.四川省布拖县风能资源局地调查评估[J].西南大学学报(自然科学版),2019,41(1):105-113.
[3] 顾本文,王明,施晓晖.云南风能资源的特点[J].太阳能学报,2000,21(1):45-49.
[4] 陆鸿彬,张渝杰,孙俊,等.四川省风能资源详查和评估[J].高原山地气象研究,2018,38(3):61-65.
[5] 李泽椿,朱蓉,何晓凤,等.风能资源评估技术方法研究[J].气象学报,2007,65(5):708-717.
[6] 段莹,丁立国,罗宇翔.CFD方法在贵州分散式风电场资源评估中的应用研究[J].贵州气象,2014,38(5):8-12.
[7] Kiss P,Jánosi I M.Limitations of wind power availability over Europe:a conceptual study[J].Nonlinear Processes in Geophysics,2008,15(6):803-813.
[8] Satyanarayana G C,Lucy Supriya R H,Bhaskar Rao D V.Wind energy assessment over the Andhra Pradesh and Telangana regions[J].Meteorological Applications,2019,26(1):14-29.
[9] Boudia S M,Santos J A.Assessment of large-scale wind resource features in Algeria[J].Energy,2019,189:116299.
[10] 刘汉武,王文本,江滢,等.再分析数据在风能资源评估中的优势和局限性[J].风能,2016(12):58-63.
[11] 孟宪贵,郭俊建,韩永清.ERA5再分析数据适用性初步评估[J].海洋气象学报,2018,38(1):91-99.
[12] 经皓童,孙建奇,于水,等.中国西南地区5月降水与阿拉伯海季风关系的年代际变化[J].大气科学,2021,45(5):1087-1098.
[13] ECMWF.ERA5:data documentation[EB/OL].Available online:https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation,2021-10.
[14] 吕润清,李响.ERA-Interim和ERA5再分析数据在江苏区域的适用性对比研究[J].海洋预报,2021,38(4):27-37.
[15] Akinsanola A A,Ogunjobi K O,Abolude A T,et al.Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models[J].Environmental Research Letters,2021,16(4):044033.
[16] 吉平,周孝信,武守远.采用平均风速参与因子法的区域风资源评估[J].中国电机工程学报,2012,32(19):10-15.
[17] Kapen P T,Gouajio M J,YeméléD.Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential:Application to the city of Bafoussam,Cameroon[J].Renewable Energy,2020,159:1188-1198.
[18] Tizgui I,El Guezar F,Bouzahir H,et al.Comparison of methods in estimating Weibull parameters for wind energy applications[J].International Journal of Energy Sector Management,2017,11(4):650-663.
[19] 陈楠,杨苹,邹澍,等.基于WRF模式的广东海上风资源评估[J].装备环境工程,2013,10(5):1-6.
[20] He J,Chan P W,Li Q,et al.Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong[J].Energy,2020,201:117622.
[21] 廖顺宝,刘凯,李泽辉.中国风能资源空间分布的估算[J].地球信息科学,2008,10(5):551-556.
[22] 杨迎超,刘宏昭,原大宁,等.测风数据处理与风资源评估[J].太阳能学报,2012,33(10):1661-1666.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(01):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(01):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(01):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(01):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(01):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(01):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(01):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(01):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
备注/Memo
收稿日期:2022-01-05
基金项目:国家自然科学基金资助项目(41775072、42075019); 四川省杰出青年科技人才计划资助项目(2019JDJQ0001)