SONG Yurun,ZENG Shenglan,WANG Shigong,et al.Influence and Prediction of Temperature Change on Circulatory System Diseases in Funan Area[J].Journal of Chengdu University of Information Technology,2023,38(02):174-180.[doi:10.16836/j.cnki.jcuit.2023.02.008]
变温对阜南地区循环系统疾病的影响
- Title:
- Influence and Prediction of Temperature Change on Circulatory System Diseases in Funan Area
- 文章编号:
- 2096-1618(2023)02-0174-07
- Keywords:
- applied meteorology; medical meteorology; temperature change; circulatory diseases; distributed lag nonlinear model(DLNM)
- 分类号:
- P49
- 文献标志码:
- A
- 摘要:
- 为探究阜南地区循环系统疾病住院人数与变温的关系,选取2013-2016年阜南县逐日循环系统疾病住院人数资料及同期气象要素资料,采用分布滞后非线性模型与广义相加模型,在控制长期趋势、季节趋势和其他混杂因素后,分析变温对循环系统疾病住院人数的影响。研究结果表明:(1)阜南地区循环系统疾病高发期为春季,夏季住院人数最少。(2)日最高/最低气温24 h变温与循环系统疾病住院人数累积暴露-反应关系分别呈“U”型、“J”型分布,变温绝对值越高,相对危险度(RR)越高。正变温对循环系统疾病的影响主要表现为即时效应,负变温表现出一定的滞后性。日最高气温24 h变温为11.6 ℃滞后3 d后RR达到最大值1.28(95%CI:1.15,1.43),日最低气温24 h变温为10.5 ℃在滞后1 d时,RR达到最大1.45(95%CI:1.20,1.74)。(3)气温升高和降低均能增加阜南地区居民循环系统疾病发病风险,正变温对疾病发病率的影响更强。女性和老年人对变温反应更敏感,在高正变温下患病风险更高。
- Abstract:
- In order to explore the relationship between the number of circulatory diseases hospitalizations and temperature change between neighboring days(TCN)in Funan area, the daily number of circulatory diseases hospitalizations and meteorological elements in the same period in Funan County from 2013 to 2016 were selected.The distributed lag nonlinear model(DLNM)and generalized additive model(GAM)were used to analyze the exposure-response relationship between the meteorological elements and the number of circulatory disease hospitalizations after controlling the factors such as long-term trend, seasonal trend and other confounding factors. The results show that:(1)The high incidence period of circulatory diseases in Funan County is spring, and the number of hospitalizations is the least in summer.(2)The relationship between the maximum/minimum temperature change between neighboring days(MaxTCN/MinTCN)and the cumulative exposure-response of the number of circulatory disease hospitalizations showed “U” and “J” distribution respectively. The higher the absolute value of TCN, the higher the relative risk(RR).The influence of positive TCN on circulatory system diseases is mainly immediate effect, while negative TCN shows a certain lag.The daily maximum temperature for 24 hours is 11.6 ℃ and the daily minimum temperature for 24 hours is 10.5 ℃.After a lag of 3 days,the RR reaches the maximum value of 1.28(95% CI 1.15,1.43), and the daily minimum temperature reaches 10.5 ℃.When the lag is 1 day,the RR reaches the maximum of 1.45(95% CI 1.20,1.74).(3)Both the increase and decrease of temperature can increase the risk of circulatory diseases in Funan County,and the positive TCN has a stronger impact on the incidence rate of diseases.Women and the elderly are more sensitive to temperature changes and have a higher risk of developing the disease under high positive temperatures.
参考文献/References:
[1] Giorgi F,Field C,Barros V.IPCC Climate Change 2013:Impacts, Adaptation and Vulnerability:Key findings and lessons learned; proceedings of the Egu General Assembly Conference[C].F,2014.
[2] Berko J,Ingram D D,Saha S,et al.Deaths attributed to heat,cold,and other weather events in the United States,2006-2010[J].National Health Stats Reports,2014,2014(76):1-15.
[3] Azhar G S,Mavalankar D,Nori-Sarma A,et al.Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave[J].PLoS ONE,2014,9(3):e91831.
[4] Chan E Y Y,Ho J Y,Hung H H Y,et al.Health impact of climate change in cities of middle-income countries:the case of China[J].British Medical Bulletin,2019,130(1):5-24.
[5] Ce,Wang,Lan,et al.The impact of ambient particulate matter on hospital outpatient visits for respiratory and circulatory system disease in an urban Chinese population[J].Science of the Total Environment,2019,666:672-679.
[6] Gao H,Lan L,Yang C,et al.The Threshold Temperature and Lag Effects on Daily Excess Mortality in Harbin,China:A Time Series Analysis[J].The International Journal of Occupational and Environmental Medicine,2017,8(2):85-95.
[7] Yang J,Yin P,Zhou M,et al.Cardiovascular mortality risk attributable to ambient temperature in China[J].Heart,2015,101(24):1966-1972.
[8] 代玉田,于凤英,常平,等.德州市高血压发病气象条件与预报模式[J].气象与环境学报,2012,28(5):79-82.
[9] Zhang Y,Fan X,Zhang X,et al.Moderately cold temperature associates with high cardiovascular disease mortality in China[J].Air Quality Atmosphere & Health,2019,12(2):1225-1235.
[10] Zhang Y,Wang S,Zhang X,et al.Mortality Risk Attributed to Ambient Temperature in Nanjing,China[J].Biomedical & Environmental Sciences Bes,2019,32(1):42-46.
[11] 陈美池,牛静萍,阮烨,等.兰州市日均气温与心血管疾病日入院人次的时间序列研究[J].环境与健康杂志,2014,31(5):391-394.
[12] Zheng S,Zhu W,Wang M,et al.The effect of diurnal temperature range on blood pressure among 46,609 people in Northwestern China[J].Science of The Total Environment,2020,730:138987.
[13] 谭玉龙,尹岭,王式功,等.不同地区温度变化对缺血性心脑血管疾病影响的比较研究[J].气象与环境学报,2019,35(3):94-99.
[14] Guo P,Zheng M,Feng W,et al.Effects of ambient temperature on stroke hospital admissions:Results from a time-series analysis of 104,432 strokes in Guangzhou,China[J].Science of the Total Environment,2017,580:307-315.
[15] Ma P,Zhang Y,Wang X,et al.Effect of diurnal temperature change on cardiovascular risks differed under opposite temperature trends[J].Environmental Science and Pollution Research,2021,28(29):39882-39891.
[16] 付桂琴,刘华悦,贾俊妹.石家庄地区气温对慢性阻塞性肺病住院人数的影响[J].气象与环境学报,2017,33(2):101-106.
[17] 刘华悦,付桂琴,王洁.石家庄市气象要素对成人哮喘住院人数的影响[J].气象与环境学报,2019,35(5):137-143.
[18] Lei X,Liu L,Chen R,et al.Temperature changes between neighboring days and childhood asthma:a seasonal analysis in Shanghai,China[J].International Journal of Biometeorology,2020,65(6):827-836.
[19] Vicedo-Cabrera A M,Bertil F,Aurelio T,et al.Associations of Inter-and Intraday Temperature Change With Mortality[J].American Journal of Epidemiology,2016,183(4):286-293.
[20] Zhan Z,Zhao Y,Pang S,et al.Temperature change between neighboring days and mortality in United States:A nationwide study[J].Science of the Total Environment,2017(2):584-585.
[21] Gasparrini A,Armstrong B,Kenward M G.Distributed lag non-linear models[J].Statistics in Medicine,2010,29(21):2224-2234.
[22] 赵笑颜,张渊,黎檀实,等.热指数对阜南地区呼吸系统疾病的影响[J].兰州大学学报(自然科学版),2019,55(1):134-140.
[23] Mohammadi R,Soori H,Alipour A,et al.The impact of ambient temperature on acute myocardial infarction admissions in Tehran,Iran[J].Journal of Thermal Biology,2018,73(8):24-31.
[24] 杨正志,杨利华.气象因素对老年高血压患者血压的影响[J].世界中西医结合杂志,2009,4(6):418-419.
[25] 乐满.气象条件和空气污染对遵义市呼吸和循环系统疾病的影响及预测研究[D].兰州:兰州大学,2018.
[26] 马守存,张书余,王宝鉴,等.气象条件对心脑血管疾病的影响研究进展[J].干旱气象,2011,29(3):350-354.
相似文献/References:
[1]欧映瑜,朱克云,张 杰,等.微波辐射计对昆明雾天的监测及应用[J].成都信息工程大学学报,2018,(01):54.[doi:10.16836/j.cnki.jcuit.2018.01.011]
OU Ying-Yu,ZHU Ke-yun,ZHANG Jie,et al.Monitoring and Application of the Foggy Weatherin Kunming by Microwave Radiometer[J].Journal of Chengdu University of Information Technology,2018,(02):54.[doi:10.16836/j.cnki.jcuit.2018.01.011]
[2]姜继兰,韩 琳.基于ArcGIS的四川地区城市气候舒适度评价[J].成都信息工程大学学报,2018,(03):318.[doi:10.16836/j.cnki.jcuit.2018.03.015]
Jiang Ji-lan,Han Lin.The Urban Climatic Comfort Degree Evaluation in Sichuan based on GIS[J].Journal of Chengdu University of Information Technology,2018,(02):318.[doi:10.16836/j.cnki.jcuit.2018.03.015]
[3]何 毅,张 杰,朱克云,等.HTG-3型微波辐射计资料在天气诊断分析中的应用研究[J].成都信息工程大学学报,2016,(02):213.
HE Yi,ZHANG Jie,ZHU Ke-yun,et al.The Application Research on Weather Diagnostic Analysis Using
HTG-3 Microwave Radiometer Detecting Data[J].Journal of Chengdu University of Information Technology,2016,(02):213.
[4]罗 倩,李谢辉,王 磊,等.四川省1960-2017年旱涝时空变化特征分析[J].成都信息工程大学学报,2020,35(02):214.[doi:10.16836/j.cnki.jcuit.2020.02.013]
LUO Qian,LI Xiehui,WANG Lei,et al.Analysis of Spatial and Temporal Change Characteristics of Drought and Flood in Sichuan Province from 1960 to 2017[J].Journal of Chengdu University of Information Technology,2020,35(02):214.[doi:10.16836/j.cnki.jcuit.2020.02.013]
[5]黄 健,李谢辉,王 磊,等.基于SPEI指数的西南地区近42 a干旱时空变化分析[J].成都信息工程大学学报,2020,35(03):359.[doi:10.16836/j.cnki.jcuit.2020.03.018]
HUANG Jian,LI Xiehui,WANG Lei,et al.Analysis on Spatial and Temporal Variations of Drought in Southwest of China in Recent 42 Years based on SPEI Index[J].Journal of Chengdu University of Information Technology,2020,35(02):359.[doi:10.16836/j.cnki.jcuit.2020.03.018]
[6]欧奕含,韩 琳,张小玲,等.成都黄龙溪景区旅游环境舒适度评价及其时空分异[J].成都信息工程大学学报,2021,36(02):206.[doi:10.16836/j.cnki.jcuit.2021.02.013]
OU Yihan,HAN Lin,ZHANG Xiaoling,et al.Evaluation of Tourism Environmental Comfort and its Spatial-temporal Differentiation of Huanglongxi Scenic Areas in Chengdu[J].Journal of Chengdu University of Information Technology,2021,36(02):206.[doi:10.16836/j.cnki.jcuit.2021.02.013]
[7]贾何佳,李谢辉,王 磊,等.西南地区干湿演变特征及其对ENSO事件的响应[J].成都信息工程大学学报,2021,36(04):451.[doi:10.16836/j.cnki.jcuit.2021.04.015]
JIA Hejia,LI Xiehui,WANG Lei,et al.Characteristics of Dry-wet Evolution and its Response to ENSO Events in Southwestern China[J].Journal of Chengdu University of Information Technology,2021,36(02):451.[doi:10.16836/j.cnki.jcuit.2021.04.015]
[8]田淙海,邓佩云,于万荣,等.山西太长高速公路交通事故与气象条件关系分析[J].成都信息工程大学学报,2021,36(05):532.[doi:10.16836/j.cnki.jcuit.2021.05.010]
TIAN Conghai,DENG Peiyun,YU Wanrong,et al.Analysis of Relationship between High-speed Traffic Accidents and Meteorological Factors on Tai-chang Expressway in Shanxi Province[J].Journal of Chengdu University of Information Technology,2021,36(02):532.[doi:10.16836/j.cnki.jcuit.2021.05.010]
[9]林颖仪,王式功,马 盼,等.基于气候季节划分的海南岛气候康养特征探析[J].成都信息工程大学学报,2021,36(06):705.[doi:10.16836/j.cnki.jcuit.2021.06.018]
LIN Yingyi,WANG Shigong,MA Pan,et al.Exploration of the Characteristics of Climatotherapy in Hainan Island based on the Division of Climate Seasons[J].Journal of Chengdu University of Information Technology,2021,36(02):705.[doi:10.16836/j.cnki.jcuit.2021.06.018]
[10]潘昱杉,李谢辉.四川省暴雨洪涝灾害风险评估[J].成都信息工程大学学报,2022,37(02):186.[doi:10.16836/j.cnki.jcuit.2022.02.012]
PAN Yushan,LI Xiehui.Risk Assessment of Rainstorm and Flood Disasters in Sichuan Province[J].Journal of Chengdu University of Information Technology,2022,37(02):186.[doi:10.16836/j.cnki.jcuit.2022.02.012]
备注/Memo
收稿日期:2022-02-14
基金项目:国家自然科学基金资助项目(41505122); 国家重点研发计划资助项目(2018YFC0214003); 国家重点研发计划课题资助项目(2018YFC0214002); 四川省科技支撑资助项目(2015GZ0238); 四川省重大科技专项资助项目(2018SZDZX0023)