CAI Mingyu,CHENG Zhigang,WANG Junfeng.Precipitation in the Three-rivers in Winter Half Year[J].Journal of Chengdu University of Information Technology,2023,38(02):181-191.[doi:10.16836/j.cnki.jcuit.2023.02.009]
CMIP6多模式对三江源冬半年极端降水模拟能力评估
- Title:
- Precipitation in the Three-rivers in Winter Half Year
- 文章编号:
- 2096-1618(2023)02-0181-11
- Keywords:
- extreme precipitation; evaluation; CMIP6 Models; the Three-rivers region; Winter half year文章编号:2096-1618(2023)02-0192-08
- 分类号:
- P467
- 文献标志码:
- A
- 摘要:
- 为了评估4个全球气候模式(CMIP6)在三江源地区冬半年极端降水的模拟能力,基于台站监测资料和模式历史模拟数据,针对8个极端降水指数,采用泰勒图及多个统计方法进行量化分析。结果表明:(1)多数模式及其集合平均均能够较好地模拟出三江源冬半年极端降水的年际变化趋势,但模式模拟结果均高于观测;(2)模式对8个极端降水指数空间分布模拟能力较强,其空间相关系数较高,大部分达到0.8且均通过0.01显著性;(3)对不同指数而言,模式模拟差异性较大并且模式对于各极端降水指数的时间变率的模拟能力显著弱于空间分布模拟;(4)对不同台站而言,模式对不同台站间的模拟效果差距明显,但总体依旧是多模式集合平均MAM表现最好。
- Abstract:
- In order to evaluate the simulation ability of four global climate models(CMIP6)for extreme precipitation in the winter half year in the Three-rivers region, eight extreme precipitation indices were quantitatively analyzed by using Taylor plots and multiple statistical methods based on the monitoring data of stations and model historical simulation data.The results show that:(1)Most of the models and their ensemble averages can well simulate the interannual variation trend of extreme precipitation in the winter half year over the Three-rivers, but the model simulation results of the model are higher than the observed ones;(2)The model has a strong ability to simulate the spatial distribution of the eight extreme precipitation indices, and its spatial correlation coefficient is relatively high, most of which reach 0.8 and pass the significance of 0.01.(3)For different indices, the model simulation has a large difference, and its ability to simulate the temporal variability of extreme precipitation indices is significantly weaker than that of spatial distribution simulation.(4)For different stations, there is a significant difference in the simulation effect of the model on different stations, but the average MAM of the multi-mode set is still the best overall.
参考文献/References:
[1] 董锁成,周长进,王海英.“三江源”地区主要生态环境问题与对策[J].自然资源学报,2002(6):713-720.
[2] 赵新全,周华坤.三江源区生态环境退化、恢复治理及其可持续发展[J].中国科学院院刊,2005(6):37-42.
[3] 游庆龙,康世昌,李潮流,等.三江源地区1961~2005年气温极端事件变化[J].长江流域资源与环境,2008(2):232-236.
[4] 韦晶,郭亚敏,孙林,等.三江源地区生态环境脆弱性评价[J].生态学杂志,2015,34(7):1968-1975.
[5] 冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据.科学通报,1998,43(6):633-636.
[6] 韦志刚,黄荣辉,董文杰.青藏高原气温和降水的年际和年代际变化.大气科学,2003,27(2):157-170.
[7] 杨玮,何金海,王盘兴,等.近42年来青藏高原年内降水时空不均匀性特征分析.地理学报,2011,66(3):376-384.
[8] 周天军,邹立维,陈晓龙.第六次国际耦合模式比较计划(CMIP6)评述[J].气候变化研究进展,2019,15(5):445-456.
[9] 唐红玉,杨小丹,王希娟,等.三江源地区近50年降水变化分析[J].高原气象,2007(1):47-54.
[10] 左洪超,吕世华,胡隐樵.中国近50年气温及降水量的变化趋势分析[J].高原气象,2004(2):238-244.
[11] 易湘生,尹衍雨,李国胜,等.青海三江源地区近50年来的气温变化[J].地理学报,2011,66(11):1451-1465.
[12] 刘晓琼,吴泽洲,刘彦随,等.1960-2015年青海三江源地区降水时空特征[J].地理学报,2019,74(9):1803-1820.
[13] 李林,李凤霞,朱西德,等.三江源地区极端气候事件演变事实及其成因探究[J].自然资源学报,2007(4):656-663.
[14] 李璠,肖建设,颜亮东.1964-2014年青海省三江源地区日降水格局分析[J].干旱地区农业研究,2016,34(5):282-288.
[15] 侯文菊,铁顺富,张世珍.“三江源”地区冬季积雪及气温降水的变化特征[J].青海科技,2010,17(1):60-66.
[16] 董文杰,韦志刚,范丽军.青藏高原东部牧区雪灾的气候特征分析[J].高原气象,2001,20(4):402-406.
[17] 燕华云,贾绍凤.近50a来青海水文要素变化特征分析[J].冰川冻土,2003,25(2):186-191.
[18] David R,Easterling.Detection and attribution of climate extremes in the observed record[J].Weather and Climate Extremes,2016,11:17-27.
[19] Markus G,Donat.More extreme precipitation in the world’s dry and wet regions[J].Nature Climate Change,2016,6(5):508-513.
[20] Peter Berg,Christopher Moseley,Jan O.Haerter. Strong increase in convective precipitation in response to higher temperatures[J].Nature Geoscience,2013,6(3):181-185.
[21] 葛咏,李强子,凌峰,等.“一带一路”关键节点区域极端气候风险评价及应对策略[J].中国科学院院刊,2021,36(2):170-178.
[22] 吴佳,周波涛,徐影.中国平均降水和极端降水对气候变暖的响应:CMIP5模式模拟评估和预估[J].地球物理学报,2015,58(9):3048-3060.
[23] Veronika Eyring.Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6)experimental design and organization[J].Geoscientific Model Development,2016,9(5):1937-1958.
[24] 赵宗慈,罗勇,黄建斌.从检验CMIP5气候模式看CMIP6地球系统模式的发展[J].气候变化研究进展,2018,14(6):643-648.
[25] 周天军,陈梓明,邹立维,等.中国地球气候系统模式的发展及其模拟和预估[J].气象学报,2020,78(3):332-350.
[26] 王予,李惠心,王会军,等.CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J].气象学报,2021,79(3):369-386.
[27] 向竣文,张利平,邓瑶,等.基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估[J].武汉大学学报(工学版),2021,54(1):46-57+81.
[28] 张佳怡,伦玉蕊,刘浏,等.CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J/OL].北京师范大学学报(自然科学版),2021-11-21.
[29] 廖荣伟,张冬斌,沈艳.6种卫星降水产品在中国区域的精度特征评估[J].气象,2015,41(8):970-979.
[30] Taylor K E.Summarizing multiple aspects of model performance in a single diagram[J].J.Geophys.Res,2001,106(D7):7183-7192.
[31] Taylor K E,Stouffer R J,Meehl G A.An overview of CMIP5 and the experiment design [J].Bull.Amer.Meteor.Soc,2012,93:485-498.
备注/Memo
收稿日期:2022-02-18
基金项目:国家自然科学基金资助项目(41971026)
通信作者:程志刚.E-mail:chengzg@cafuc.edu.cn