PDF下载 分享
[1]李宝林,刘宇韬.基于Re-Perceptron-CRF的规范类文本分词研究[J].成都信息工程大学学报,2023,38(03):298-305.[doi:10.16836/j.cnki.jcuit.2023.03.008]
 LI Baolin,LIU Yutao.Research on Word Segmentation of Normative Text based on Re-Perceptron-CRF[J].Journal of Chengdu University of Information Technology,2023,38(03):298-305.[doi:10.16836/j.cnki.jcuit.2023.03.008]
点击复制

基于Re-Perceptron-CRF的规范类文本分词研究

参考文献/References:

[1] 许峰,张雪芬,忻展红.基于深度神经网络模型的中文分词方案[J].哈尔滨工程大学学报,2019,40(9):1662-1666.
[2] Chomsky N.Syntactic Structures[M].The Hague:Mouton de Gruyter,2002.
[3] 宗成庆.统计自然语言处理[M].北京:清华大学出版社,2008:129-130.
[4] Li Hongqiao,Huang Chang-Ning.The use of SVM for Chinese new word identification[A].In:Proceedings of the 1st International Joint Conference on Natural Language Processing(lJCNLP2004)[C].Hainan Island,2004:723-732.
[5] 王厚峰,戴大为.汉语句法结构标注的研究[J].计算机研究与发展,1997(3):77-82.
[6] 魏欧,吴健,孙玉芳.基于统计的汉语词性标注方法的分析与改进[J].软件学报,2000(4):473-480.
[7] 杨尔弘,方莹,刘冬明,等.汉语自动分词和词性标注评测[J].中文信息学报,2006(1):44-49.
[8] 奉国和,郑伟.国内中文自动分词技术研究综述[J].图书情报工作,2011,55(2):41-45.
[9] BRILL E.A corpus-based approach to language learning[D].Philadelphia:University of Pennsylvania,1993.
[10] 李华栋,贾真,尹红风,等.基于规则的汉语兼类词标注方法[J].计算机应用,2014,34(8):2197-2201.
[11] Baum L E,Eagon J A.An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology[J].Bulletin of the American Mathematical Society,1967(73):360-363.
[12] Lafferty J,McCallum A,Pereira F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[J].In Proceedings of the18th International Conf on machine Learning,2001:282-289.
[13] RATNAPARKHI A.A maximum entropy model for part-of-speech tagging[C].Proceedings of the 1996.
[14] 梁喜涛,顾磊.中文分词与词性标注研究[J].计算机技术与发展,2015,25(2):175-180.
[15] 周强.规则和统计相结合的汉语词类标注方法[J].中文信息学报,1995(3):1-10.
[16] Lample G.Neural architectures for named entity recognition[C].Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(NAACL-HLT),2016:260-270.
[17] 刘伟,黄锴宇,余浩,等.基于语境相似度的中文分词一致性检验研究[J].北京大学学报(自然科学版),2022,58(1):99-105.
[18] 凤丽洲,杨贵军,徐雪,等.基于N-gram的双向匹配中文分词方法[J].数理统计与管理,2020,39(4):633-643.
[19] Liu Junxin,Wu Fangzhao,Wu Chuhan,et al.Neural Chinese word segmentation with dictionary[J].Neurocomputing,2019:338.
[20] Gan Leilei,Zhang Yue.Investigating Self-Attention Network for Chinese Word Segmentation[J].CoRR,2019.
[21] Si Huihui,Ning Xin. Research and Implementation of Chinese Automatic Word Segmentation System Based on Complex Network Features[J]. Wireless Communications and Mobile Computing,2022.
[22] Yan Hang,Qiu Xipeng,Huang Xuanjing. A Graph-based Model for Joint Chinese Word Segmentation and Dependency Parsing[J].Transactions of the Association for Computational Linguistics,2020:8.
[23] 徐飞,孙劲光.中文分词切分技术研究[J].计算机工程与科学,2008(5):126-128.
[24] Jelinek F,Self-Organized Language Modeling for Speech Recogntion[J].Reading in Speech Recognition.Morgan Kaufann Publishers ins 1990:450-506.
[25] Bengio Y,Ducharme R,Vincent P.3(Feb):2003:1137-1155.
[26] Forney GD Jr.The Viterbi algorithm[J].Proceedings of the lEEE,1973,61(3):268-278.
[27] Rosenblatt F.The perceptron:Probabilistic model for information storage and organization in the brain.Psychological Review,1958,65(6):386-408.
[28] Mikolov T,Chen K,Corrado G,et al.Efficient Estimation of Word Representations in Vector Space[C].IIICLR 2013,2013.
[29] Michalewicz Z.Genetic Algorithms+ Data Structures evolution programs[M].(3rd ed),New York:Springer-Verlag,1996.
[30] 刘克.实用马尔可夫决策过程[M].北京:清华大学出版社,2004.
[31] ROBINSON J.Dependency structures and transformational rules[J].Language,1970,46(2):259-285.
[32] Kleene,S C.Representation of Events in Nerve Nets and Finite Automata[M].1951.
[33] 邵艳秋,穗志方,韩纪庆,等.基于依存句法分析的汉语韵律层级自动预测技术研究[J].中文信息学报,2008(2):116-123.
[34] 陈强,何炎祥,刘续乐,孙松涛,彭敏,李飞.基于句法分析的跨语言情感分析[J].北京大学学报(自然科学版),2014,50(1):55-60.

备注/Memo

收稿日期:2022-07-05
基金项目:四川省科技服务业示范资助项目(2021GFW015); 四川省电子商务与现代物流研究中心重点资助项目(DSWL21-3)

更新日期/Last Update: 2023-06-30