ZHANG Jiahua,LUO Yali,GAO Yanyu,et al.Analysis of the Disaster-causing Guangzhou “May 22” Extreme Rainfall EventUsing Multisource Data: from Synoptic Background to Meso-γ-scale Vortices[J].Journal of Chengdu University of Information Technology,2023,38(03):330-339.[doi:10.16836/j.cnki.jcuit.2023.03.013]
广州“5·22”致灾特大暴雨的多源资料分析——从天气尺度背景到γ-中尺度涡旋
- Title:
- Analysis of the Disaster-causing Guangzhou “May 22” Extreme Rainfall EventUsing Multisource Data: from Synoptic Background to Meso-γ-scale Vortices
- 文章编号:
- 2096-1618(2023)03-0330-10
- 关键词:
- 华南前汛期极端降水; 多尺度特征; γ-中尺度涡旋; 分钟—公里级分辨率观测资料
- Keywords:
- extreme hourly precipitation; multiscale feature; meso-γ-scale vortex; observations of minute-and-kilometer-scale resolutions
- 分类号:
- P463.1
- 文献标志码:
- A
- 摘要:
- 为提高对季风海岸极端降水成因机制的认识,利用分钟-公里级分辨率资料,采用双偏振雷达定量降水估计和定量识别中涡旋(MV)的方法,分析2020年5月21日夜间至22日清晨珠三角地区致灾特大暴雨的多尺度特征与机制。结果表明:该事件8 h累积降水最大397 mm,48站次录得>75 mm/h极端小时降雨(EXHP); 在天气尺度低空切变线及其南侧强劲的暖湿西南气流影响下,强降水对流的入流空气的CAPE约3000 J/kg,CIN不超过10 J/kg,LCL约300 m,可降水量超过70 mm; 降水产生的弱偏北气流和来自热带洋面的偏南气流对峙,形成准静止的中尺度锋区,其抬升作用使对流得以维持; 6个低层MV与EXHP伴随,MV强度弱,主要出现在地面中尺度切变线附近,弱冷池的南缘、近地面辐合中心,大多数时刻MV跟逐6 min累积雨量的大值没有空间相关。
- Abstract:
- To increase the awareness of the causes and physical mechanisms of extreme precipitation over monsoon coasts, the disaster-causing extreme precipitation event in the Pearl River Delta from the night of May 21 to the morning of May 22, 2020 is analyzed using the km-and-minute resolution data and the dual-polarization radar-based quantitative precipitation estimation and meso-vortex(MV)detection. The results show that, in this event, the maximum 8-hr rainfall accumulation is 397 mm and there are 48 records of extreme hourly precipitation(EXHP; >75 mm/h)collected by rain gauges. Under the influences of a synoptic low-level shear line and the strong warm, moist southwesterly airflow on its south side, the upstream inflow air fed into the extreme rainfall-producing convective system is characterized by large convective available potential energy(CAPE; about 3000 J/kg), small convection inhibition(CIN)of no more than 10 J/kg, low lifting condensation level(LCL)of about 300 m, and the amount of precipitable water exceeding 70 mm. The precipitation-generated weak northerly flows near the surface converge with the southerly airflow from the tropical ocean, forming a quasi-stationary mesoscale frontal zone acting as an uplift mechanism to maintain the heavy rainfall-producing convection. Six meso-γ-scale vortices are accompanied with the EXHP periods. The strength of such meso-scale rotation is generally weak. The mesoscale vortices mostly appear on or near the surface meso-scale shear line and the southern edge of the weak cold pool generated by rain evaporation, collocated with the surface convergence center. The MVs at most times are not spatially related to the large 6 minute rainfall accumulation of the EXHP.
参考文献/References:
[1] Ding Y H.Monsoons over China[M].London: Kluwer Academic Publishers,1994:419.
[2] Luo Y,Zhang R,Wan Q,et al.The Southern China Monsoon Rainfall Experiment(SCMREX)[J].Bull.Amer.Meteor.Soc.,2017,98:999-1013.
[3] Wu M,Luo Y,Chen F,et al.Observed link of extreme hourly precipitation changes to urbanization over coastal South China[J].J.Appl.Meteor.Climatol,2019,58:1799-1819.
[4] 广东省气象局.广东省气象局关于“5·7”广州突发特大暴雨气象服务情况的报告[R].广州:广东省气象局文件.2017.
[5] Schumacher R S,Johnson R H.Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J].Mon.Wea.Rev.,2005,133:961-976.
[6] Doswell C A,Brooks H E,Maddox R A.Flash flood forecasting:An ingredients-based methodology[J].Wea.Forecasting,1966,11:560-581.
[7] Luo Y,Gong Y,Zhang D L.Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-yu front in East China[J].Mon.Wea.Rev.,2014,142:203-221.
[8] Wang H,Luo Y L,Jou B J D.Initiation,maintenance,and properties of convection in an extreme rainfall event during SCMREX:Observational analysis[J].J.Geophys.Res.Atmos.,2014,119(13):206-232.
[9] Luo Y,Chen Y.Investigation of the predictability and physical mechanisms of an extreme-rainfall producing mesoscale convective system along the Meiyu front in East China:an ensemble approach[J].J.Geophys.Res.Atmos.,2015,120:10593-10618.
[10] Nielsen E R,Schumacher R S.Dynamical Mechanisms Supporting Extreme Rainfall Accumulations in the Houston “Tax Day” 2016 Flood[J].Mon.Wea.Rev.,2020,148:83-109.
[11] Nielsen E R,Schumacher R S.Observations of Extreme Short-Term Precipitation Associated with Supercells and Mesovortices[J].Mon.Wea.Rev.,2020,148:159-182.
[12] Nielsen E R,Schumacher R S.Dynamical Insights into Extreme Short-Term Precipitation Associated with Supercells and Mesovortices[J].Atmos.Sci.,2018,75:2983-3009.
[13] Yin J,Zhang D L,Luo Y,et al.On the Extreme Rainfall Event of 7 May 2017 over the Coastal City of Guangzhou.Part I:Impacts of Urbanization and Orography[J].Mon.Wea.Rev.,2020,148:955-979.
[14] Li M,Luo Y,Zhang D L,et al.Analysis of a Record-Breaking Rainfall Event Associated With a Monsoon Coastal Megacity of South China Using Multisource Data[J].IEEE Transactions on Geoscience and Remote Sensing,2021(99):1-11.
[15] Zeng Zhilin,Wang D H.On the local rain rate extreme associated with a mesovortex over South China:Observational structures,characteristics,and evolution[J].Mon.Wea.Rev.,2022,150:1075-1096.
[16] Wang G L,Zhang D L,Sun J S.A multiscale analysis of a nocturnal extreme rainfall event of 14 July 2017 in Northeast China[J].Mon.Wea.Rev.,2021,149:173-187.
[17] Zhang Q,Luo Y,Tang Y,et al.On the relationship between meso-γ-scale rotation and extreme short-term precipitation: Observational analysis of a rainstorm over the Pearl River Delta[J].Journal of Meteorological Research,2022,36:539-552.
[18] Wang Y,Cocks S,Tang L,et al.A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase.Part I:Algorithm description[J].Journal of Hydrometeorology,2019,20(5):985-997.
[19] Cocks S B,Tang L,Zhang P,et al.A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase.Part II:Performance verification and case study analysis[J].Journal of Hydrometeorology,2019,20(5):999-1014.
[20] Seo B C,Krajewski W F,Ryzhkov A.Evaluation of the specific attenuation method for radar-based quantitative precipitation estimation:Improvements and practical challenges[J].Journal of Hydrometeorology,2020,21(6):1333-1347.
[21] Andra D L.The origin and evolution of the WSR-88 D mesocyclone recognition nomogram[R].Preprints,28th Confon Radar Meteorology,Austin,TX.Amer.Meteor.Soc.,1997:364-365.
[22] Robert R Lee,Anderson White.Improvement of the WSR-88D Mesocyclone Algorithm[J].weather and forecasting,1998,13:341-351.
[23] Eugene W McCAUL JR,Dennis E Buechler,Steven J Goodman,et al.Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes[J].Amer.Meteor.Soc.,2004,132:1747-1763.
[24] Tang Y,Xu X,Xue M,et al.Characteristics of low-level meso-γ-scale vortices in the warm season over East China[J].Atmospheric Research,2020,235:104768.
[25] Zrnic’ D S,Burgess D W,Hennington L D,et al.Automatic detection of mesocyclonic shear with Doppler Radar[J].Atmos.Oceanic Technol.,1985,4:425-438.
[26] Burgess D W,Lee R R,Parker S S,et al.A study of minisupercells observed by WSR-88D radars[J].Amer.Meteor.Soc.,1995:4-6.
[27] Du Y,Chen G.Heavy rainfall associated with double low-level jets over southern China.Part II:Convection initiation[J].Monthly Weather Review,2019,147(2):543-565.
[28] Meng Z,Yan D,Zhang Y.General features of squall lines in East China[J].Monthly weather review,2013,141(5):1629-1647.
[29] Qian Q,Lin Y,Luo Y,et al.Sensitivity of a simulated squall line during SCMREX to parameterization of microphysics[J].Geophys.Res.Atmos.,2018,123:4197-4220.
[30] 吴瑞姣,陶玮,周昆,等.江淮灾害性大风飑线的特征分析[J].气象,2019,45(2):155-165.
[31] Brooks,Doswell H E C A,Zhang X,et al.A Century of Progress in Severe Convective Storm Research and Forecasting[J].Meteorological Monographs,2019(59):1-41.
相似文献/References:
[1]高瑜曼,高 琳,何 晋.基于Dual-Hard-Net网络的结直肠息肉分割算法[J].成都信息工程大学学报,2023,38(03):291.[doi:10.16836/j.cnki.jcuit.2023.03.007]
GAO Yuman,GAO Lin,HE Jin.Colorectal Polyp Segmentation Algorithm Using Dual-Hard-Net Network[J].Journal of Chengdu University of Information Technology,2023,38(03):291.[doi:10.16836/j.cnki.jcuit.2023.03.007]
备注/Memo
收稿日期:2023-02-23
基金项目:国家自然科学基金资助项目(42030610)