ZHANG Wulong,QING Quan,YANG Jingchao,et al.Environmental Conditions of Mesoscale Convective Systems Triggering Extreme Flash-Rain in Sichuan Basin[J].Journal of Chengdu University of Information Technology,2023,38(03):349-357.[doi:10.16836/j.cnki.jcuit.2023.03.015]
触发四川盆地极端短时强降水的中尺度对流系统环境条件
- Title:
- Environmental Conditions of Mesoscale Convective Systems Triggering Extreme Flash-Rain in Sichuan Basin
- 文章编号:
- 2096-1618(2023)03-0349-09
- Keywords:
- meteorology; extreme precipitation; MCS; environmental conditions
- 分类号:
- P456.7
- 文献标志码:
- A
- 摘要:
- 为研究触发极端降水的中尺度对流系统(MCS)环境条件,利用常规探空和地面观测资料以及雷达组合反射率因子资料,分析2013-2019年5-9月41例触发四川盆地极端短时强降水的MCS的环流形势和中尺度物理量特征,并对MCS的成因进行初步探讨。结果表明:触发四川盆地极端短时强降水的MCS发生的天气形势可分为斜压锋生类和准正压类。斜压锋生类天气形势可分为低层切变型和西南低涡型,分别对应邻近层状云类和涡旋类MCS发生前的环流背景。准正压类天气形势可分为低槽东移型、两高切变型、东风扰动型,易发生平行层状云类、后向扩建类和尾随层状云类MCS。邻近层状云类和涡旋类MCS的抬升凝结高度和平衡高度高于平行层状云类、后向扩建类和尾随层状云类MCS。高温高湿环境是5类MCS发生发展的共同特征,涡旋类和邻近层状云类MCS环境的热力不稳定性相对较高,涡旋类和邻近层状云类、平行层状云类和后向扩建类MCS发生在低层水汽输送更为充沛的环境下。相较于其他3类MCS,强的垂直风切变更有利于后向扩建类和平行层状云类MCS的发展维持。在准正压类天气形势下,天气尺度强迫较弱,MCS形成和发展与低层流场、地面中尺度辐合线、地形强迫以及雷暴冷池有密切关系。
- Abstract:
- Due to discuss environmental conditions of mesoscale convective systems triggering extreme precipitation, using the conventional sounding and surface observation datasets, and composite radar reflectivity data, this study investigates the synoptic situation, mesoscale physical parameters and formation of 41 MCSs triggering extreme flash-rain between May and September during 2013-2019 in Sichuan basin. The results show that there are two synoptic situation configurations of MCSs: baroclinic frontogenesis and quasi-barotropic category. The baroclinic frontogenesis synoptic category can be classified into southwest vortex and low-level shear patterns, representing the circulation background before the occurrence of Training Line/Adjoining Stratiform(TL/AS)and Vorticity Stratiform(VS)MCSs, respectively. The quasi-barotropic synoptic category can be classified into low-trough eastward movement, shear between two high-pressure and easterly disturbance patterns. In these patterns, Parallel Stratiform(PS), Back-Building/Quasi-Stationary(BB/QS)and Trailing Stratiform(TS)MCSs are easy to occur. Comparing with PS, BB/QS and TS modes, TL/AS and VS modes have relatively high altitude of lifting condensation level and equilibrium level. The high temperature and high humidity environment is the common feature of producing and developing the five MCS modes. The higher thermal instability is benefit for VS and TL/AS modes, and the more vapor transport in low level can make for generating VS, TL/AS, PS and BB/QS modes. The strong vertical wind shear play a more important role in the development and maintenance of BB/QS and PS modes than that in the other 3 modes. In quasi-barotropic synoptic situation, the formation and development of MCSs have a close relationship with low-level stream field, surface mesoscale convergence line, topographic effect and thunderstorm cold pool under weak synoptic-scale forcing.
参考文献/References:
[1] 俞小鼎,周小刚,王秀明.雷暴与强对流临近天气预报技术进展[J]. 气象学报,2012,70(3):311-337.
[2] 俞小鼎,郑永光.中国当代强对流天气研究与业务进展[J].气象学报,2020,78(3):391-418.
[3] 张小玲,谌芸,张涛.对流天气预报中的环境场条件分析[J].气象学报,2012,70(4):642-654.
[4] 陈涛,代刊,张芳华.一次华北飑线天气过程中环境条件与对流发展机制研究[J]. 气象,2013,39(8):945-954.
[5] 杨新林,孙建华,鲁蓉,等. 华南雷暴大风天气的环境条件分布特征[J].气象,2017,43(7):769-780.
[6] 丁一汇,李鸿洲,章名立,等.我国飑线发生条件的研究[J]. 大气科学,1982,6(1):18-27.
[7] 吴瑞姣,陶玮,周昆,等.江淮灾害性大风飑线的特征分析[J]. 气象, 2019,45(2):155-165.
[8] 王晓芳.长江中下游地区梅雨期线状中尺度对流系统分析Ⅱ:环境特征[J]. 气象学报,2012,70(5):924-935.
[9] Zheng L L,Sun J H,Zhang X L,et al.Organizational modes of mesoscale convective systems over central East China[J]. Wea Forecasting,2013,28(5):1081-1098.
[10] 郑淋淋,孙建华.干、湿环境下中尺度对流系统发生的环流背景和地面特征分析[J]. 大气科学,2013,37(4):891-904.
[11] 盛杰,郑永光,沈新勇.华北两类产生极端强天气的线状对流系统分布特征与环境条件[J]. 气象学报,2020,78(6):877-898.
[12] 范元月,罗剑琴,张家国,等.宜昌极端短时强降水中尺度对流系统特征分析[J]. 气象,2020,46(6):776-791.
[13] 杨康权,张琳,肖递祥,等.四川盆地西部一次大暴雨过程的中尺度特征分析[J]. 高原气象,2013,32(2):357-367.
[14] 孙建华,李娟,沈新勇,等.2013年7月四川盆地一次特大暴雨的中尺度系统演变特征[J]. 气象,2015,41(5):533-543.
[15] 杨舒楠,张芳华,徐珺,等.四川盆地一次暴雨过程的中尺度对流及其环境场特征[J]. 高原气象,2016,35(6):1476-1486.
[16] 杨康权,肖递祥,罗辉,等.四川盆地西部两次暖区暴雨过程分析[J]. 气象科技,2019,47(5):795-808.
[17] 张武龙,康岚,陶勇,等.四川盆地极端短时强降水中尺度对流系统组织类型[J]. 成都信息工程大学学报,2021,36(6):697-704.
[18] 许爱华,孙继松,许东蓓,等.中国中东部强对流天气的天气形势分类和基本要素配置特征[J]. 气象,2014,40(4):400-411.
[19] 张武龙,康岚,杨康权,等.四川盆地不同强度短时强降水物理量特征对比分析[J]. 气象,2021,47(4):439-449.
[20] 孙建华,郑淋淋,赵思雄.水汽含量对飑线组织结构和强度影响的数值实验[J]. 大气科学,2014,38(4):742-755.
[21] 王秀明,周小刚,俞小鼎.雷暴大风环境特征及其对风暴结构影响的对比研究[J]. 气象学报,2013,71(5):839-852.
[22] 俞小鼎,王秀明,李万莉,等. 雷暴与强对流临近预报[M]. 北京:气象出版社,2020:416.
[23] 陈明轩,王迎春,肖现,等.北京“7.21”暴雨雨团的发生和传播机理[J]. 气象学报,2013,71(4):569-592.
[24] 郑淋淋,孙建华.风切变对中尺度对流系统强度和组织结构影响的数值试验[J]. 大气科学,2016,40(2):324-340.
[25] 樊李苗,俞小鼎. 中国短时强对流天气的若干环境参数特征分析[J]. 高原气象,2013,32(1):156-165.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(03):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(03):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(03):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(03):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(03):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(03):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(03):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(03):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(03):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
[11]邹 璐sup>,肖国杰,黎跃浩.近54 a云南西北地区极端降水频数和强度特征[J].成都信息工程大学学报,2016,(05):531.
ZOU Lu,XIAO Guo-jie,LI Yue-hao.Analysis on the Frequency And Intensity of Extreme Precipitation
in the Northwest Yunnan during Last 54 Years[J].Journal of Chengdu University of Information Technology,2016,(03):531.
[12]龙天强,俞小鼎,凌 燕,等.基于区域站雷达观测的黔东南“7.20”极端降水成因分析[J].成都信息工程大学学报,2021,36(02):214.[doi:10.16836/j.cnki.jcuit.2021.02.014]
LONG Tianqiang,YU Xiaoding,LING Yan,et al.Analysis on the Causes of the Extreme Precipitation in the Southeast of Guizhou on June 20 based on Radar Observation by Regional Station[J].Journal of Chengdu University of Information Technology,2021,36(03):214.[doi:10.16836/j.cnki.jcuit.2021.02.014]
[13]卢会国,张 捷,蒋娟萍,等.四川盆地极端降水演变特征及拟合[J].成都信息工程大学学报,2021,36(04):404.[doi:10.16836/j.cnki.jcuit.2021.04.010]
LU Huiguo,ZHANG Jie,JIANG Juanping,et al.The Research of Observation Data Correction based on Convex Optimization Theory[J].Journal of Chengdu University of Information Technology,2021,36(03):404.[doi:10.16836/j.cnki.jcuit.2021.04.010]
备注/Memo
收稿日期:2022-03-30
基金项目:四川省科技厅资助项目(2022YFS0542); 四川省重点实验室资助项目(SCQXKJYJXZD202101、SCQXKJYJXMS202112、SCQXKJQN2019001); 中国局预报员专项资助项目(CMAYBY2020-110); 四川智能网格预报创新团队资助项目(川气发[2022]52号)
通信作者:青泉.E-mail: qxtqingq@163.com