WEI Wei,ZHANG Tao,ZHANG Dongfang,et al.Analysis of an Extreme Gale Induced by Cold Advection from the Upper Layers[J].Journal of Chengdu University of Information Technology,2023,38(03):372-380.[doi:10.16836/j.cnki.jcuit.2023.03.018]
一次高空冷平流诱发的极端雷暴大风分析
- Title:
- Analysis of an Extreme Gale Induced by Cold Advection from the Upper Layers
- 文章编号:
- 2096-1618(2023)03-0372-09
- Keywords:
- extreme gale; dry and cold inflow; cold pool; gust front
- 分类号:
- P458.2
- 文献标志码:
- A
- 摘要:
- 为提高盆地西部极端大风的预报预警水平,利用多源探测资料和再分析资料,从天气学角度对2021年7月18日四川盆地西部的一次极端雷暴大风的成因和风暴的精细化结构进行分析。结果表明:在高空干冷平流侵入低层暖湿区域以及中等强度垂直风切变作用下,配合抬升凝结高度以下“喇叭口”结构的温湿廓线条件形成本次雷暴大风。中层干冷入流加强为急流、蒸发冷却和降水拖曳明显增强、冷池梯度加大等因素诱导强下沉气流在地面形成极端大风。极端大风出现时雷达回波为弓形多单体回波。成熟和消亡阶段,本站气压涌升和风速剧增开始时刻较最大瞬时风速出现提前15 min左右,瞬时风速的大值时段与相对湿度小值时段同时出现。成熟阶段灾害性大风发生的区域位于风暴母体“V型”缺口顶部及其右侧区域。此外,基于RKW理论还发现,风暴最强时刻冷池和低层风垂直切变产生的水平涡度接近平衡状态。
- Abstract:
- To improve the prediction accuracy of extreme gales in western Sichuan Basin, an extreme thunderstorm gale over western Sichuan Basin on July 18, 2021 is analyzed by multi-source data and reanalysis data. The results are as follows. Under the conditions of dry and cold advection from the upper layers intruding into warm and wet regions in the lower layers, the moderate vertical wind shear and temperature humidity profile with “bell mouth” structure in below Lifting Condensation Level, the thunderstorm gale was formed. Dry and cold inflow in the middle layers strengthened into jet, enhanced effects of evaporative cooling and precipitation dragging, increased gradient of cold pool and other factors induced the strong downdraft to form extreme gale at ground. The radar echo is arched multi-cell when extreme gale occurs. During maturation and dissipation period, the beginning of pressure surge and wind speed surge are about 15 minutes earlier than the maximum instantaneous wind speed. High instantaneous wind speed appears at low relative humidity. Extreme gale occurs at the top or right of V-notch of the parent storm during maturation period. Moreover, based on RKW theory, horizontal vortices generated by cold pool are close to that generated by low-level vertical wind shear.
参考文献/References:
[1] 郑永光,陶祖钰,俞小鼎.强对流天气预报的一些基本问题[J].气象,2017,43(6):641-652.
[2] 秦丽,李耀东,高守亭.北京地区雷暴大风的天气——气候学特征研究[J].气候与环境研究,2006,11(6):754-762.
[3] 廖晓农,于波,卢丽华.北京雷暴大风气候特征及短时临近预报方法[J].气象.2009,35(9):18-28.
[4] 杨景泰,隋玉秀,王健,等.大连地区雷暴大风的气候和天气学特征[J].气象与环境学报,2017,33(6):49-57.
[5] 蔡荣辉,姚蓉,黄小玉,等.洞庭湖区域雷暴大风分型及预报分析研究[J].气象,2017,43(5):560-572.
[6] 龙柯吉,康岚,罗辉,等.四川盆地雷暴大风雷达回波特征统计分析[J].气象,2020,46(2):212-222.
[7] Johns R H,Doswell C.Severe Local Storms Forecasting[J].Wea Forecasting,1992, 7(4):588-612.
[8] 俞小鼎,周小刚,王秀明. 雷暴与强对流临近天气预报技术进展[J].气象学报,2012,70(3):513-527.
[9] 王秀明,周小刚,俞小鼎.雷暴大风环境特征及其对风暴结构影响的对比研究[J].气象学报,2013,71(5):839-852.
[10] 杨新林,孙建华,鲁蓉,等.华南雷暴大风天气的环境条件分布特征[J].气象,2017,43(7):769-780.
[11] 马淑萍,王秀明,俞小鼎.极端雷暴大风的环境参量特征[J].应用气象学报,2019,30(3):292-301.
[12] 陈晓欣,俞小鼎,王秀明.中国大范围雷暴大风事件(Derechos)研究:时空分布、环境背景和对流系统形态特征[J].气象学报,2022,80(1):67-81.
[13] 俞小鼎,张爱民,郑媛媛等.一次系列下击暴流事件的多普勒天气雷达分析[J].应用气象学报,2006,17(4):385-393.
[14] 梁爱民,张庆红,申红喜,等.北京地区雷暴大风预报研究[J].气象,2006,32(11):73-80.
[15] 刁秀广,赵振东,高慧君,等.三次下击暴流雷达回波特征分析[J].气象,2011,37(5):522-531.
[16] 康岚,刘炜桦,肖递祥,等.四川盆地一次极端大风天气过程成因及预报着眼点分析[J].气象,2018,44(11):1414-1423.
[17] Schmidt J M,Cotton W R.A high plains squall line associated with severe surface winds[J].J Atmos Sci,1989,46(3):281-302.
[18] Klimowski B A,Hjelmfelt M R,Bunkers M J.Radar observations of the early evolution of bow echoes[J].Wea Forecasting,2004,19(4):727-734.
[19] 伍志方,庞古乾,贺汉青,等.2012年4月广东左移和飑线内超级单体的环境条件和结构对比分析[J].气象,2014,40(6):655-667.
[20] French A J,Parker M D.Observations of mergers between squall lines and isolated supercell thunderstorms[J].Wea Forecasting,2012,27(2):255-278.
[21] French A J,Parker M D.Numerical simulations of bow echo formation following a squall line-supercell merger[J].Mon Wea Rev,2014,142(12):4791-4822.
[22] Fujita T T.Manual of downburst identification for project NIMROD[R], SMRP Research Paper NO.156,Chicago:University of Chicago,1978:1-104.
[23] Doswell Ⅲ C A.Severe convective storms-An overview[J].Meteor Monogr,Amer Meteor Soc,Boston,2001,28(50):257-308.
[24] 王黉,李英,宋丽莉,等.川藏地区雷暴大风活动特征和环境因子对比[J].应用气象学报,2020,31(4):435-446.
[25] 孙继松,戴建华,何立富,等.强对流天气预报的基本原理与技术方法-中国强对流天气预报手册[M].北京:气象出版社,2014:83-93.
[26] 竹利,陈朝平,陈茂强,等.川北飑线成熟阶段灾害性大风成因个例分析[J].暴雨灾害,2018,37(2):164-173.
[27] 李晓蓉,高青云,周虹.一次新生脉冲风暴分析[J].高原山地气象研究,2018,38(3):80-84.
[28] 李曦,黄敬淋,王智楷.2019年4月9日四川东北部一次飑线大风的成因分析[J].沙漠与绿洲气象,2020,14(4):52-60.
[29] 孙继松.气流的垂直分布对地形雨落区的影响[J].高原气象,2005,24(1):62-69.
[30] 肖现,陈明轩,高峰,等.弱天气系统强迫下北京地区对流下山演变的热动力机制[J].大气科学,2015,39(1):100-124.
[31] Mahoney W P Ⅲ.Gust front characteristics and the kinematics associated with interacting thunderstorm outflows[J].Mon Wea Rev,1988,116(7):1474-1479.
[32] 张涛,李柏,杨洪平,等.三次雷暴导致的阵风锋过程分析[J].气象,2013,39(10):1275-1283.
[33] 徐长义,王彦.渤海湾阵风锋垂直结构特征及维持机制[J].海洋预报,2021,38(6):21-32.
[34] Goff R C.Vertical Structure of Thunderstorm Outflows[J].Mon wea rev,1976,104:1429-1440.
[35] Klingle D L,Smith D R,Wolfson M M. Gust front characteristics as detected by Doppler Radar.Mon Wea Rev,1987,115(5):905-918.
[36] 席宝珠,俞小鼎,孙力,等.我国阵风锋类型与产生机制分析及其主观识别方法[J].气象,2015,41(2):133-142.
[37] Fujita T T,Byers H R.Spearhead echo and downbursts in the crash of an airliner[J].Mon Wea Rev,1997,105(2):129-146.
[38] 梁建宇,孙建华.2009年6月一次飑线过程灾害性大风的形成机制[J].大气科学,2012,36(2):316-336.
[39] 刘香娥,郭学良.灾害性大风发生机理与飑线结构特征的个例分析模拟研究[J].大气科学,2012,36(6):1150-1164.
[40] Fujita T T.The downburst:SMRP Research Paper 210[R].Chicago:University of Chicago,1985:1-122.
[41] 罗琪,郑永光,陈敏.2017年北京北部一次罕见强弓状飑线过程演变和机理[J].气象学报,2019,77(3):371-386.
[42] 张琳娜,冉令坤,李娜,等.雷暴大风过程中对流层中低层动量通量和动能通量输送特征研究[J].大气科学,2018,42(1):178-191.
[43] Rotunno R,Klemp J B,Weisman M L.A theory for strong,long-lived squall lines[J].JAtomos Sci,1988,45(3):463-485.
[44] 陈明轩,肖现,高峰.出流边界对京津冀地区强对流局地新生及快速增强的动力效应[J].大气科学,2017,41(5):897-917.
[45] 陈明轩,王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报,2012,70(3):371-386.
备注/Memo
收稿日期:2022-11-19
通信作者:张涛.E-mail:radar_zt@163.com