CHEN Baofa,MA Zhongyuan WANG Lizhi,HUANG Longfei,et al.Analysis of Echo Characteristics of Strong Wind Caused by “Collapse” Phenomenon of a Thunderstorm Echo[J].Journal of Chengdu University of Information Technology,2023,38(04):459-466.[doi:10.16836/j.cnki.jcuit.2023.04.013]
景德镇一次雷暴回波“崩塌”现象与强风关系的分析
- Title:
- Analysis of Echo Characteristics of Strong Wind Caused by “Collapse” Phenomenon of a Thunderstorm Echo
- 文章编号:
- 2096-1618(2023)04-0459-08
- Keywords:
- echo merging; warm and humid front area; “collapse” phenomenon; echo area; Negative velocity region
- 分类号:
- P446
- 文献标志码:
- A
- 摘要:
- 为了解雷暴回波形成强风的原因, 使用自动气象站数据、雷达拼图组合反射率(CR)产品、新一代天气雷达(CINRAD-SA)、雷达产品生成子程序(PUP)和景德镇TWP3型边界层风廓线雷达等资料, 采用天气学、雷达气象学等方法, 对2017年8月20日雷暴回波的特征进行分析, 结果表明:(1)赣东北强风过程的影响系统为西太副热带高压(北部边缘), 500 hPa前倾槽、湿度锋、850 hPa切变线, 地面有辐合线等。(2)景德镇附近不断有对流回波新生、发展、合并, 组合反射率(CR)强度达到65 dBZ, 60 dBZ强回波面积增大≥100 km2, 回波处于最强盛时刻, 但没有出现大风。(3)温度锋区和湿度锋区对雷暴回波的影响主要表现在新生对流回波、回波快速发展和回波异常活跃上。(4)强风往往产生于雷暴回波最强盛至快速减弱时刻, CR回波强度60~65 dBZ减弱为55~60 dBZ, 55 dBZ回波面积快速减小且分散; 回波顶高(ET)从18 km降到15 km; 垂直积分液体水含量(VIL)从50 kg/m2降到30 kg/m2; 这些变化在两个体扫时间内快速完成, 故称为“崩塌”现象。(5)反射率因子垂直剖面RCS上, CR回波强度从60 dBZ降到55 dBZ, 55 dBZ回波面积迅速减小; 径向速度垂直剖面(VCS)上, 强回波区由正负速度对、低层辐合、高层辐散迅速转变为负速度区; 地面开始出现强风。研究结果对局地雷暴大风或强风天气的预警监测有指导意义。
- Abstract:
- In order to understand the cause of thunderstorm echo forming strong wind, the characteristics of thunderstorm echo on August 20, 2017 were analyzed using the data of automatic weather station, radar composite reflectivity mosaic(CR)product, new generation weather radar(CINRAD-SA), PUP productand TWP3 boundary layer wind profile radar in Jingdezhen, etc. The results show that: (1)the influence system of the strong wind process in Northeast Jiangxi is the Western Pacific subtropical high(northern edge), 500 hPa forward trough, humidity front, 850 hPa shear line, convergence line on the ground, etc. (2)Convection echoes are constantly emerging, developing and merging near Jingdezhen. The composite reflectivity(CR)intensity reaches 65 dBZ, and the area of 60 dBZ strong echo increases ≥ 100 km2. The echois at its peak, but there is no strong wind. (3)The influence of temperature front and humidity front on thunderstorm echo is mainly manifested in the newborn convection echo, the rapid development of echo and the abnormal activity of echo. (4)Strong winds often occur from the time when thunderstorm echo is strongest to the time when it weakens rapidly. At this time, CR echo intensity of 60-65 dBZ weakens to 55-60 dBZ, and the echo area of 55 dBZ rapidly decreases and disperses; Echo top height(ET)drops from 18 km to 15 km; Vertical integrated liquid water content(VIL)decreased from 50 kg/m2 to 30 kg/m2. These changes occur and disappear rapidly within the scanning time of two individuals, so they are called “collapse” phenomenon. (5)On the RCS of the reflectivity factor vertical profile, the CR echo intensity decreases from 60 dBZ to 55 dBZ, and the echo area with 55 dBZ CR decreases rapidly; on the radial velocity vertical cross-section(VCS), the strong echo region rapidly changes from positive and negative velocity pairs, low-level convergence and high-level divergence to negative velocity region; strong winds began to appear on the ground.The results of the study have guiding significance for the early warning and monitoring of thunderstorm or strong wind weather.
参考文献/References:
[1] Browning K A, Donaldson R J.Airflow and structure of a tor-nadic storm[J].JAtmos Sci, 1963, 20:533-545.
[2] Browning K A.Airflow and precipitation trajectories with in severe local storms which travel to the right of the winds[J].J AtmosSci, 1964, 21:634-639.
[3] Browning K A.The structure and mechanisms of hailstorms[J].Amer Meteor Soc Monog, 1978, 38:1-36.
[4] 陈云辉, 许爱华, 许彬, 等.江西一次极端雷暴大风过程的中尺度特征与成因分析[J].暴雨灾害, 2019, 38(2):126-134.
[5] 许爱华, 詹丰兴, 刘晓晖, 等.强垂直温度梯度条件下强对流天气分析与潜势预报[J].气象科技, 2006, 34(4):376-380.
[6] 许爱华, 孙继松, 许东蓓, 等.中国中东部强对流天气的天气形势分类和基本要素配置特征[J].气象, 2014, 40(4):400-411.
[7] 费海燕, 王秀明, 周小刚, 等.中国强雷暴大风的气候特征和环境参数分析[J].气象, 2016, 42(12):1513-1521.
[8] 陈元昭, 俞小鼎, 陈训来.珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J].气象, 2016, 42(2):144-155.
[9] 许爱华, 马中元, 叶小峰.江西8种强对流天气形势与云型特征分析[J].气象, 2011, 37(10):1185-1195.
[10] 王福侠, 俞小鼎, 裴宇杰, 等.河北省雷暴大风的雷达回波特征及预报关键点[J].应用气象学报, 2016, 27(3):342-351.
[11] 王秀明, 周小刚, 俞小鼎.雷暴大风环境特征及其对风暴结构影响的对比研究[J].气象学报, 2013, 71(5):839-852.
[12] 俞小鼎, 张爱民, 郑媛媛, 等.一次系列下击暴流事件的多普勒天气雷达分析[J].应用气象学报, 2006, 17(4):385-393.
[13] 张煜婷, 王霄, 雷建, 等.白鹤滩水电站冬春季两次极端强风天气的对比分析[J].沙漠与绿洲气象, 2017, 11(4):39-47.
[14] 刘懿枢, 马中元, 刘强, 等.2019年江西早春一次高架对流过程分析[J].内蒙古气象, 2021, 42(1):18-23.
[15] 马中元, 叶小峰, 张瑛, 等.江西三类致灾大风天气活动与回波特征分析[J], 气象, 2011, 37(9):1108-1117.
[16] 马中元, 许爱华, 贺志明, 等.九江地区一次无降水致灾大风天气过程分析[J].气象与减灾研究, 2009, 32(3):52-56.
[17] 陈鲍发, 马中元, 徐芬, 等.天气雷达风暴跟踪信息拼图技术设计与应用[J].气象科学, 2020, 40(6):838-848.
[18] 高建平, 马中元, 吴才明, 等.2017年江西上高雷暴大风雷达回波特征分析[J].沙漠与绿洲气象, 2019, 13(2):55-62.
[19] 吴才明, 马中元, 何文, 等.2017年江西副热带高压边缘雷暴大风回波特征[J].气象科学, 2019, 39(6):797-809.
[20] 洪丽霞, 马中元, 陈鲍发, 等.“7.11”江西副高边缘雷暴大风回波特征分析[J].中低纬山地气象, 2021, 45(5):30-36.
[21] 苏俐敏, 马中元, 钱焕荣, 等.宜春短时强降水的单站要素统计和分析[J].气象水文海洋仪器, 2013, 30(1):62-65.
[22] 苏俐敏, 夏文梅, 马中元, 等.2012年江西宜春四类短时强降水特征分析[J].气象科学, 2014, 34(6):700-708.
[23] 辛玮琦, 马中元, 谌云, 等.宜丰短时强降水雷达回波特征分析[J].沙漠与绿洲气象, 2021, 15(2):70-80
[24] 桂园园, 马中元, 齐永胜, 等.2017年鹰潭市城区暴雨天气与回波特征分析[J].自然灾害学报, 2020, 29(3):63-75.
[25] 何文, 夏文梅, 马中元, 等.江西强雷电天气形势场及雷达回波特征分析[J].气象科学, 2018, 38(5):699-706.
[26] 马中元, 许爱华, 陈云辉, 等.江西省灾害性强雷电雷达回波特征[J].自然灾害学报, 2009, 18(5):16-23.
[27] 夏文梅, 马中元, 慕瑞琪, 等.江西副高边缘雷暴大风雷达拼图回波特征分析[J].大气科学学报, 2021, 44(5):717-726.
[28] 马中元, 苏俐敏, 谌芸, 等.一次强飑线及飑前中小尺度系统特征分析[J].气象, 2014, 40(8):916-929.
[29] Sun W Y, Ogura Y.Boundary-layer forcing as a possible trugger to a squall line formation[J].J.Atmos.Sci.1979, 36:235-254.
[30] Sun W Y, Ogura Y.Modeling the evolution of the convection planetary boundary layer[J].J.Atmos.Sci.1980, 36:1558-1572.
[31] Stull R B.Integral scales for the noclurnal boundary layer.Part I:empirical depth rclationships[J].J.Clim.Appl.Meteorol.1983, 22:673-686.
[32] Sun W Y.A forward-back ward time integration scheme to trcal internal gravity waves[J].Mon.Wcather Rcr.2009, 108:402-407.
[33] 夏文梅, 马中元, 陈爆发, 等.中尺度湿度和温度锋区对局地冰雹回波的影响[J].大气科学学报, 2022.
[34] 马中元, 张瑛, 马晓琳, 等.江西对流风暴触发系统与形成机制的探讨[J].自然灾害学报, 2009, 19(3):19-26.
[35] 陈鲍发, 马中元.江西局地冰雹WebGIS雷达拼图回波特征分析[J].气象与环境科学, 2019, 42(2):104-114.
备注/Memo
收稿日期:2022-05-26
基金项目:中国科学院战略性先导科技专项资助项目(A类-XDA19040202)、国家自然科学基金资助项目(41975001)、江西省气象局2020年面上资助项目(JX2020M05)、江西省气象局2021年预报员专项资助项目(JX2021Y02)
通信作者:马中元.E-mail: mazhongyuan1@163.com