WANG Ren,SUN Haoran,JING Shouzhao,et al.A RF Circuit Design for Non-destructive Testing of Dielectric Properties of Materials[J].Journal of Chengdu University of Information Technology,2023,38(05):503-506.[doi:10.16836/j.cnki.jcuit.2023.05.002]
一种用于材料介电特性无损检测电路设计
- Title:
- A RF Circuit Design for Non-destructive Testing of Dielectric Properties of Materials
- 文章编号:
- 2096-1618(2023)05-0503-04
- 分类号:
- TN923
- 文献标志码:
- A
- 摘要:
- 随着微波技术的高速发展,基于微波技术的材料介电特性无损检测被广泛应用于复合材料、食品工程和细胞活性检测等领域。提出一种基于共面波导结构(CPW)的对称型材料介电特性检测电路,该微波电路工作于S波段,主要包含二等分功率分配/合路器及多根交指电容(IDC),通过对称结构和多根交指电容互耦建立待检测材料与电磁波强相互作用区域,基于该电路设计了材料介电特性无损检测实验系统。实验测量与仿真结果非常吻合,证明该检测装置的可靠性。最后,实验测量了常用固态材料如 Teflon、Plexiglas、PVC和干燥原木等的电路散射参数响应情况,证明该无损检测电路的高灵敏度和可靠性。
- Abstract:
- With the rapid development of microwave technology, non-destructive testing(NDT)of dielectric properties of materials based on microwave technology has been widely applied in the fields of compliance materials, food engineering and cell activity testing. This paper proposes symmetrical RF circuit based on coplanar waveguide structure. The microwave circuit works in the S-band and mainly includes two-half power distribution/synthesis branches and multiple interdigitated capacitive mutual couplings. The experimental measurements are consistent with the simulation results, proving the reliability of the detection device. Finally, the complex dielectric constants of common solid materials such as Teflon, Plexiglas and PVC are measured experimentally, and the comparison with the existing experimental data proves the measurement accuracy and reliability of the nondestructive testing circuit.
参考文献/References:
[1] 赵锐,陈超婵.传输/反射法测量固体复介质材料介电常数[J]. 上海计量测试,2020,47(3):43-45.
[2] 王韧,孙浩然,敬守钊,等.5G频段下材料无损检测传感装置设计[J].成都信息工程学院学报,2022,37(1):51-54.
[3] 王依超,郭高凤,王娟,等.自由空间法测量电磁材料电磁参数[J].宇航材料工艺,2014,44(1):107-111.
[4] 刘君,许卫东,刘珩,等.基于微波反射率波动特性的混凝土介电常数测量方法[J].电波科学学报,2015,30(1):141-146.
[5] 卞峰,黄卡玛.微波化学反应器与实验结果的重复性[J].化工学报,2007,58(2):378-382.
[6] 郭富祥,赖展军,薛锋章.基于微带谐振法的介电常数无损伤测量[J].重庆邮电大学学报(自然科学版),2017,29(3):346-351.
[7] Booth J,Orloff N,Mateu J,et al.Quantitative permittivity measurements of nanoliter liquid volumes in microfluidic channels to 40 GHz[J].IEEE Transactions on Instrumentation and Measurement,2010,59(12):3279-3288.
[8] Withayachumnankul W,Jaruwongrungsee K,Tuantranont A,et al.Metamaterial-based microfluidic sensor for dielectric characterization[J].Sensors and Actuators A:Physical,2013(189):33-237.
[9] Silavwe E,Somjit N, Robertson I.A microfluidic-integrated SIW lab-on-substrate sensor for microliter liq-uid characterization[J].IEEE Sensors Journal,2016,16(21):7628-7635.
[10] 朱明亮,李勃,郭云胜. 一种微波介质材料介电常数的测量方法[J]. 电子元件与材料,2022, 41(3):238-242,290.
[11] 郭富祥,赖展军,薛锋章.基于微带谐振法的介电常数无损伤测量[J].重庆邮电大学学报(自然科学版),2017,29(3):346-351.
[12] 廖崇蔚,蒋龙凯,瞿强,等.一种基片集成波导终端加载结构的复介电常数测量传感器[J].应用科技,2021,48(6):13-17.
[13] 晏晗,陈倩,黄卡玛,等.一种基于基片集成脊波导的介电常数测量研究[J].真空电子技术,2021(6):87-91.
[14] 孙景芳,李永倩,胡佩佩,等.互补开口谐振环微带传感器介电常数的测量[J].传感技术学报,2019,32(4):532-536.
[15] 邹玉鹏.基于开口谐振环的滤波器设计[J].科技创新与应用,2016(3):1.
相似文献/References:
[1]孙浩然,代孝俊,唐 涛,等.一种工作于S波段的圆极化微带天线设计[J].成都信息工程大学学报,2018,(01):50.[doi:10.16836/j.cnki.jcuit.2018.01.010]
SUN Hao-ran,DAI Xiao-jun,TANG Tao,et al.Design of Broadband Circularly Polarized Antenna for S-band Application[J].Journal of Chengdu University of Information Technology,2018,(05):50.[doi:10.16836/j.cnki.jcuit.2018.01.010]
备注/Memo
收稿日期:2022-09-10
基金项目:国家自然科学基金资助项目(62001402); 广东省重点领域研发计划资助项目(2020B0101080001)