ZHAO Haoyang,SONG Wei,REN Hong,et al.Comparative Study of Acid Rain based on Automatic and Manual Observation in Changsha[J].Journal of Chengdu University of Information Technology,2023,38(05):572-579.[doi:10.16836/j.cnki.jcuit.2023.05.012]
长沙市酸雨自动观测与人工观测的对比分析
- Title:
- Comparative Study of Acid Rain based on Automatic and Manual Observation in Changsha
- 文章编号:
- 2096-1618(2023)05-0572-08
- Keywords:
- atmospheric physics and atmospheric environment; acid rain; manual observation; automatic observation; pH value; conductivity
- 分类号:
- P401
- 文献标志码:
- A
- 摘要:
- 为考察酸雨人工观测切换至自动观测后数据的可靠性,采用长沙站酸雨为期一年的数据,通过均值法、差值法、正态分布法等对比两者的pH值和电导率K值在采样情况、均值、酸性分布、偏差等方面差异。研究表明:与酸雨人工观测相比,自动观测系统的pH值缺测率为3.5%; 自动pH年均值为4.68,大于人工的4.42,pH值月均偏差范围为0.06~0.72,总体偏差集中在(-0.4,0.9),对应的正态函数为N(0.27,0.30),占整体量的87.3%。自动观测电导率K值缺测率为11.4%,年均值为18.15 μS/cm,略低于人工的19.31 μS/cm,月均偏差在冬季最大,为31.5μS/cm,4月最小,为-2.6 μS/cm,其余月均在-1.6~1.6 μS/cm。K值总体偏差集中在-15~15 μS/cm,对应的正态分布为NK(-0.88,4.38)。两者的偏差主要由仪器性能、采样过程、测量环境和实际操作等因素引起。结果表明,酸雨人工观测切换至自动观测具有良好的延续性和可靠性。
- Abstract:
- It is important to investigate the data reliability of acid rain after automatic observation replacing artificial observation. Based on the acid rain data of Changsha station for one year, the difference method and normal distribution method are used to compare the differences of pH values and conductivity K values in sampling situation, mean value, acid distribution, deviation and so on. The results show that the missing rate of pH from the automatic observation system is 3.5% when compared with artificial observation.The pH of the automatic observation is 4.42 which is higher than the artificial value of 4.42. The deviation of monthly average pH value is 0.06~0.72.The deviation of single pH is concentrated in the range from -0.4 to 0.9, and the corresponding normal function is N(0.27,0.30), accounting for 87.3% of the whole. The annual average value of the automatic observation conductivity K(18.15 μS/cm)is slightly larger than the artificial value(19.31 μS/cm). The K value of both methods is less than 70 μS/cm. The monthly average deviation of K value is largest in winter(31.5 μS/cm), smallest in April(-2.6 μS/cm), and within ±1.6 μS/cm in other months. The K deviations are mainly in ±15 μS/cm,corresponding normal distribution of NK(-0.88,4.38). The main cause of deviations between automatic and manual observation are instrument performance,sampling process, measuring environment and practical operation. It shows that the acid rain data from artificial to automatic mode has a good continuity and reliability.
参考文献/References:
[1] Yun J N,Zhu C,Wang Q,et al.Catalytic conversions of atmospheric sulfur dioxide and formation of acid rain over mineral dusts:Molecular oxygen as the oxygen source[J].Chemosphere,2019(217):18-25.
[2] 周涛,蒋壮,耿雷.大气氧化态活性氮循环与稳定同位素过程:问题与展望[J].地球科学进展,2019,34(9):922-935.
[3] Singh S,Elumalai S P,Pal A K,et al.Rain pH estimation based on the particulate matter pollutants and wet deposition study[J].Science of the Total Environment,2016(563-564):293-301.
[4] 杨雪,张祥志,汤莉莉,等.江苏省酸雨控制区内城市酸雨污染变化特征分析[J].污染防治技术,2017,30(5):25-27.
[5] Wei H,Ma R,Zhang J E,et al.Crop-litter type determines the structure and function of litter-decomposing microbial communities under acid rain conditions[J].Science of the Total Environment,2020(713):136600.
[6] Diatta J,Youssef N,Tylman O,et al.Acid rain induced leakage of Ca,Mg,Zn,Fe from plant photosynthetic organs-Testing for deciduous and dicotyledons[J].Ecological Indicators,2021(121):107210.
[7] Lu C F,Wang W,Zhou Q S,et al.Mechanical behavior degradation of recycled aggregate concrete after simulated acid rain spraying[J].Journal of Cleaner Production,2020(262):121237.
[8] Lu C F,Zhou Q S,Wang W,et al.Freeze-thaw resistance of recycled aggregate concrete damaged by simulated acid rain[J].Journal of Cleaner Production,2021(280):124396.
[9] 黄菊梅,何筱仙,吴思雁,等.洞庭湖滨湖酸雨特征及气象影响因子[J].气象与环境科学,2019,42(2):82-88.
[10] 徐丽霞,向峰,邱飞,等.2016-2020年云南省主要城市酸雨污染特征及趋势分析[J].灾害学,2022,37(1):96-101.
[11] Du E Z,Dong D,Zeng X T,et al.Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China[J].Science of the Total Environment,2017(605-606):764-769.
[12] 李建鑫,王文平,胡璋健,等.模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J].中国农业科学,2021,54(8):1728-1738.
[13] 张旭,陈书涛,陈桂发,等.模拟酸雨及秸秆添加对农田土壤微生物呼吸及酶活性的影响[J].农业环境科学学报,2021,40(4):823-832.
[14] 何鹏,叶潇聪,程飞,等.模拟酸雨处理下尾巨桉凋落叶pH值及养分元素释放模式[J].广西林业科学,2020,49(4):82-88.
[15] 郑梅迎,彭玉龙,刘明宏,等.模拟酸雨下生物炭添加对土壤盐基离子淋失的影响[J].农业环境科学学报,2021,40(1):163-173.
[16] 李印霞,刘碧波,付景保,等.模拟酸雨对巢湖底泥营养盐和重金属释放及其影响[J].长江流域资源与环境,2020,29(7):1612-1618.
[17] 郑丽英,陈志安,张丽,等.2006-2017年成都地区酸雨变化特征及趋势分析[J].气象科技,2020,48(3):380-386.
[18] 赵晓莉,闫军,陈中钰,等.2006-2013年四川酸雨变化特征分析[J].气象与环境科学,2015,38(2):54-59.
[19] 程龙,董昊,刘阳,等.2008-2018年黄山市酸雨污染特征变化趋势分析[J].中国环境监测,2020,36(4):89-95.
[20] 王苗,吕桅桅,王凯,等.武汉市酸雨变化特征及影响因子分析[J].气象,2019,45(2):282-289.
[21] 连纲,罗涛,傅智慧,等.2001-2018年浙江省酸雨变化特征及影响因素分析[J].中国环境监测,2021,37(4):104-110.
[22] 李力,张慧,刘雯,等.TCYII 1型酸雨自动观测系统校准与故障处理[J].气象水文海洋仪器,2021(1):102-105.
[23] 孟磊,张龙斌,李晋,等.TCYI 1型酸雨自动观测系统采样及测量性能分析[J].气象水文海洋仪器,2020,12(4):42-44.
[24] 李伟,胡欣欣,莫春燕,等.TCYII 1型酸雨自动观测系统维护及故障处理方法[J].自动化与仪器仪表,2021(12):193-196.
[25] 陈璇,章家恩,向慧敏,等.2008-2018年广东省酸雨的变化趋势研究[J].生态环境学报,2020, 29(6):1198-1204.
[26] 解淑艳,王胜杰,于洋,等.2003-2018年全国酸雨状况变化趋势研究[J].中国环境监测,2020,36(8):80-88.
[27] 郭启云,杨荣康,程凯琪,等.基于探空观测的多源掩星折射率质量控制及对比[J].应用气象学报,2020,31(1):13-26.
[28] Wu Y,Liu W J,Xu Y F,et al.Multiple isotopic tracing for sulfate and base cation sources of precipitation in Hangzhou city,Southeast China: Insights for rainwater acidification mechanism[J].Environmental Pollution,2021(288):117770.
[29] 乔晓燕,尹佳莉,李林,等.2003-2015年北京市观象台酸雨特征及长期趋势分析[J].沙漠与绿洲气象,2018,12(4):52-57.
[30] 张良玉,魏丽欣,赵春雷,等.2012-2017年京津冀区域酸雨变化特征[J].气象与环境学报,2019,35(4):47-54.
相似文献/References:
[1]刘 恒,周筠珺,赵鹏国,等.北京地区飑线天气雷电活动的数值模拟研究[J].成都信息工程大学学报,2018,(03):296.[doi:10.16836/j.cnki.jcuit.2018.03.013]
LIU Heng,ZHOU Yun-jun,ZHAO Peng-guo,et al.Numerical Simulation Study on Electrical Activity of a Squall Line in Beijing[J].Journal of Chengdu University of Information Technology,2018,(05):296.[doi:10.16836/j.cnki.jcuit.2018.03.013]
[2]成鹏伟,周筠珺,赵鹏国,等.北京与成都城市下垫面闪电时空分布特征对比研究[J].成都信息工程大学学报,2018,(03):326.[doi:10.16836/j.cnki.jcuit.2018.03.016]
CHENG Peng-wei,ZHOU Yun-jun,ZHANO Peng-guo,et al.A Comparative Study on Space-time Distribution Characteristics ofLightning Flashes in Beijing and Chengdu Cities[J].Journal of Chengdu University of Information Technology,2018,(05):326.[doi:10.16836/j.cnki.jcuit.2018.03.016]
[3]张凯锋,曹 宁,张 敏.CMIP5多模式下的ENSO模拟评估及非对称性特征分析[J].成都信息工程大学学报,2019,(03):278.[doi:10.16836/j.cnki.jcuit.2019.03.013]
ZHANG KaiFeng,CAO Ning,ZHANG Min.Evaluation and Asymmetry Feature Analysis of ENSO Events in CMIP5 Multi-models[J].Journal of Chengdu University of Information Technology,2019,(05):278.[doi:10.16836/j.cnki.jcuit.2019.03.013]
[4]蔡宏珂,郑泽华,陈权亮,等.Kelud火山喷发对平流层光学性质的影响[J].成都信息工程大学学报,2018,(05):572.[doi:10.16836/j.cnki.jcuit.2018.05.015]
CAI Hong-ke,ZHENG Ze-hua,CHEN Quan-liang,et al.The Lidar Observation for Stratospheric Optical
Features Influenced by Kelud Eruption[J].Journal of Chengdu University of Information Technology,2018,(05):572.[doi:10.16836/j.cnki.jcuit.2018.05.015]
[5]张银量,宣越健,张金强,等.东亚3 个站点臭氧层顶和对流层顶关系研究[J].成都信息工程大学学报,2016,(01):116.
ZHANG Yin-Liang,XUAN Yue-Jian,ZHANG Jin-Qiang,et al.A Study of Relationship between Ozonopause and Tropopause
over Three Sites in the East Asian[J].Journal of Chengdu University of Information Technology,2016,(05):116.
[6]鞠诗尧,张小玲,范广洲,等.北京地区一次持续重污染过程的气象成因分析[J].成都信息工程大学学报,2017,(04):419.[doi:10.16836/j.cnki.jcuit.2017.04.012]
JU Shi-yao,ZHANG Xiao-ling,FAN Guang-zhou,et al.Analysis of Meteorological Conditions for a Continuous
Heavy Pollution Process in Beijing[J].Journal of Chengdu University of Information Technology,2017,(05):419.[doi:10.16836/j.cnki.jcuit.2017.04.012]
[7]李一凡,肖 辉,杨慧玲,等.北京地区一次冬季降雪天气及其云微物理过程的数值模拟[J].成都信息工程大学学报,2020,35(01):55.[doi:10.16836/j.cnki.jcuit.2020.01.009]
LI Yifan,XIAO Hui,YANG Huiling,et al.Numerical Simulation of a Beijing Winter Snowstorm and its Cloud Microphysical Processes[J].Journal of Chengdu University of Information Technology,2020,35(05):55.[doi:10.16836/j.cnki.jcuit.2020.01.009]
[8]刘蕾蕾,聂椿力,张 梦,等.海陆风对广东沿海地区秋冬季污染物的影响研究[J].成都信息工程大学学报,2021,36(03):316.[doi:10.16836/j.cnki.jcuit.2021.03.013]
LIU Leilei,NIE Chunli,ZHANG Meng,et al.Effects of Land-sea Breeze on Autumn and Winter Pollution in some Coastal Areas of Guangdong Province[J].Journal of Chengdu University of Information Technology,2021,36(05):316.[doi:10.16836/j.cnki.jcuit.2021.03.013]
[9]周 昱,尹志聪,周筠珺.贵州威宁一次雹暴过程的雷达观测与数值模拟研究[J].成都信息工程大学学报,2022,37(02):177.[doi:10.16836/j.cnki.jcuit.2022.02.011]
ZHOU Yu,YIN Zhicong,ZHOU Yunjun.Observation and Numerical Simulation Study of a Hailstorm in Weining Guizhou Province[J].Journal of Chengdu University of Information Technology,2022,37(05):177.[doi:10.16836/j.cnki.jcuit.2022.02.011]
[10]路增鑫,范广洲.一次高原低涡过程云微物理特征模拟研究[J].成都信息工程大学学报,2023,38(02):166.[doi:10.16836/j.cnki.jcuit.2023.02.007]
LU Zengxin,FAN Guangzhou.Simulation of Cloud Microphysical Characteristics during a Plateau Vortex Process[J].Journal of Chengdu University of Information Technology,2023,38(05):166.[doi:10.16836/j.cnki.jcuit.2023.02.007]
备注/Memo
收稿日期:2022-06-17
基金项目:湖南省气象局2023创新发展专项资助项目(XFZ2023-FZZX43)