ZHANG Haoran,ZHENG Jiafeng,CHE Yuzhang.Macro-microscopic Characteristics of Cloud-precipitation under the Influence of a Low Vortex over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2023,38(06):681-688.[doi:10.16836/j.cnki.jcuit.2023.06.010]
一次青藏高原低涡影响下的云-降水宏微观特征研究
- Title:
- Macro-microscopic Characteristics of Cloud-precipitation under the Influence of a Low Vortex over the Tibetan Plateau
- 文章编号:
- 2096-1618(2023)06-0681-08
- Keywords:
- plateau vortex; cloud-precipitation; millimeter wave cloud radar; raindrops spectrum distribution
- 分类号:
- P407.2
- 文献标志码:
- A
- 摘要:
- 为进一步认识高原低涡影响下云-降水的垂直结构和微物理特征,利用那曲毫米波雷达和雨滴谱仪资料,结合ERA-5再分析和FY-2G卫星资料,对2015年8月17-19日一次高原涡云系的天气背景、雷达回波和相关物理量进行分析。结果表明,18日凌晨高原涡发展达到最强,那曲上空对流云发展旺盛; 随后,强度逐渐减弱,那曲上空过渡为层积云; 至19日20时,高原涡减弱消散。此次高原涡降水包含对流云降水和层积云降水,前者回波呈火焰状的上冲结构,回波强度达30 dBZ,但持续时间短,距离地面1 km处存在明显回波亮带; 后者在回波图上多为片状,雷达回波强度在20 dBZ以下,持续时间较长。两类降水的雨滴谱存在显著差异,对流云降水粒子直径更大、雨滴谱更宽。
- Abstract:
- To further understand the vertical structure and microphysical characteristics of cloud-precipitation under the influence of low plateau vortex, the weather background, radar echo and related physical quantities of a plateau vortex cloud system were analyzed on August 17-19, 2015 and analyzed by Naqu millimeter wave radar and raindrops spectrometer, combined with ERA-5 reanalysis and FY-2G satellite data. The results show that the plateau vortex reaches its strongest in the early morning of the 18th, and the convective cloud development over Nagqu is vigorous; then, the strength gradually weakens and it passes into cumulus; by 20:00 on the 19th, the plateau vortex weakened and dissipated. The plateau vortex precipitation includes convective cloud precipitation and cumulus precipitation. The former has a flame-like upward structure with echo intensity reaching 30 dBZ, but the duration is short, with an obvious echo bright belt at 1 km above the ground; the latter is mostly sheet on the echo chart, with radar echo intensity below 20 dBZ and long duration. The drop profiles differ significantly between the two types of precipitation, with a larger diameter of convective cloud precipitation particles and a wider droplet spectrum.
参考文献/References:
[1] 陈伯民,钱正安,张立盛.夏季青藏高原低涡形成和发展的数值模拟[J].大气科学,1996(4):491-502.
[2] 郁淑华,高文良.高原低涡移出高原的观测事实分析[J].气象学报,2006(3):392-399.
[3] 叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979.
[4] 罗四维,王玉佩.1979年5-8月青藏高原地区天气系统的统计分析.青藏高原气象科学试验文集(一)[C].北京:科学出版社,1984.
[5] 陈隆勋,宋玉宽,刘骥平.从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J].气象学报, 1999,57(5): 549-560.
[6] 郁淑华.高原低涡东移过程的水汽图像[J].高原气象, 2002,21(2):199-204.
[7] 何光碧,高文良,屠妮妮.2000-2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象,2009,28(3):549-555.
[8] Fu Y,Liu G,Wu G,et al.Tower mast of precipitation over the central Tibetan Plateau summer.[J] Geophys Res Lett,2006,33(5):157-158.
[9] 刘黎平,楚荣忠,宋新民,等.青藏高原云和降水综合观测概况及初步结果[J].高原气象,1999(3):441-450.
[10] Yang K,Koike T,Fujii H,et al.The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau:Observations and simulations[J].Meteor Soc Jpn Ser II,2004,82(6):1777-1792.
[11] 常祎,郭学良.青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征[J].科学通报,2016,61(15):1706-1720.
[12] 张涛,郑佳锋,刘艳霞.利用Ka波段云雷达研究青藏高原对流云和降水的垂直结构及微观物理特征[J].红外与毫米波学报,2019,38(6):777-789.
[13] 郑佳锋,刘黎平,曾正茂,等.Ka波段毫米波云雷达数据质量控制方法[J].红外与毫米波学报,2016,35(6):748-757.
[14] 左园园,郑佳锋,贺婧姝,等.一次高原涡过境的不同云-降水垂直结构和特征研究[J].高原气象,2022,41(5):1251-1265.
[15] 张培昌.雷达气象学[M].北京:气象出版社,1988:11-12.
备注/Memo
收稿日期:2022-10-19
基金项目:国家自然科学基金资助项目(41905084)