XU Ting,LI Xiaohan,CHE Yuzhang,et al.The Impact of Changes in Closure of Zhang-Mcfarlane Convection Scheme on Precipitation in GRIST Model[J].Journal of Chengdu University of Information Technology,2023,38(06):689-700.[doi:10.16836/j.cnki.jcuit.2023.06.011]
深对流方案闭合条件变化对全球-区域一体化模式降水模拟的影响
- Title:
- The Impact of Changes in Closure of Zhang-Mcfarlane Convection Scheme on Precipitation in GRIST Model
- 文章编号:
- 2096-1618(2023)06-0689-12
- 关键词:
- ZM深对流参数化方案; 闭合假设; 降水模拟
- 分类号:
- P435
- 文献标志码:
- A
- 摘要:
- 针对全球-区域一体化模式(GRIST)在热带对流降水过多的问题,将Zhang-Mcfarlane(ZM)闭合假设中对流在固定时间内消耗全部对流有效位能(CAPE)改为消耗一定比例的对流有效位能,从而减少对流降水。选取对流消耗95%、90%、80%、75%CAPE进行敏感实验,分析闭合假设变化对降水、云及其辐射效应的影响。结果表明,降水对CAPE消耗比例最敏感。不完全消耗CAPE会减少热带降水,主要表现为减小了赤道东太平洋、亚马逊以及印度尼西亚降水正偏差,其中CAPE95和CAPE90的降水模拟结果与观测更为接近。相比于其他实验,CAPE90消除了秋季的双赤道辐合带,夏季的双赤道辐合带也有所缓解。对流消耗CAPE量减少时,热带太平洋弱降水发生的频率减小且强度增强。相比于降水,云及其辐射效应对对流消耗CAPE量无明显敏感性。
- Abstract:
- The closure in Zhang-Mcfarlane(ZM)deep convection scheme is revised to reduce the excessive tropical precipitation for a Global-to-Regional Integrated Forecast System(GRIST). The closure in the ZM scheme that convection consumes all Convective Available Potential Energy(CAPE)in a specified adjustment time is revised to consume a certain proportion of CAPE. 95%, 90%, 80% and 75% of CAPE were selected for sensitivity experiments and the impact of the revised closure on the simulated precipitation, cloud and radiation is evaluated. The simulation results indicate that the precipitation is highly sensitive to the consumed proportion of CAPE by convection. Incompletely consuming CAPE reduces the precipitation in the tropical regions, such as the positive biases of precipitation in the equatorial eastern Pacific, southeast Pacific, Amazon and Indonesia are reduced. Comparing the sensitivity experiments results, the annual mean of precipitation for 95% and 90% CAPE consumption is closer to the observation. The 90% CAPE consumption simulation alleviates the double ITCZ bias in the autumn and summer. The reducing the amount of CAPE consumption can lead to the frequency of light precipitation reduction and the intensity of light precipitation in the tropical Pacific increase. Compared with precipitation, cloud and its radiation effects have no obvious sensitivity to convective consumption of CAPE.
参考文献/References:
[1] 张琪,李跃清,杨云芸.我国云量及其与降水关系的研究进展综述[J].高原山地气象研究,2011,31(1):79-83.
[2] Arakawa A,Schubert W H.Interaction of a cumulus cloud ensemble with the large-scale environment,Part I[J].Journal of Atmospheric Sciences,1974,31(3):674-701.
[3] 彭新东,吴晓鸣,坪木和久.积云对流参数化对一次梅雨锋暴雨过程影响的模拟检验[J].高原气象,1999,18(3):451-461.
[4] Peng X,Tsuboki K.Impact of convective parameterizations on mesoscale precipitation associated with the Baiu front[J].Journal of the Meteorological Society of Japan,1997,75(6):1141-1154.
[5] 颜曦.大气数值模式积云对流参数化方案应用研究[D].湖南省:国防科技大学,2019.
[6] 张丽霞,周天军,曾先锋,等.积云参数化方案对热带降水年循环模态模拟的影响.大气科学[J].2011,35(4):777-790.
[7] Fridlind A M,Ackerman A S,Chaboureau J P,et al.A comparison of TWP-ICE observational data with cloud-resolving model results[J].Journal of Geophysical Research:Atmospheres,2012,117(D5).
[8] Suhas E,Zhang G J.Evaluating convective parameterization closures using cloud-resolving model simulation of tropical deep convection[J].Journal of Geophysical Research:Atmospheres,2015,120(4):1260-1277.
[9] Tian B,Dong X.The double-ITCZ bias in CMIP3,CMIP5,and CMIP6 models based on annual mean precipitation[J].Geophysical Research Letters,2020,47(8):e2020GL087232.
[10] Kim J E,Alexander M J.Tropical precipitation variability and convectively coupled equatorial waves on submonthly time scales in reanalyses and TRMM[J].Journal of Climate,2013,26(10):3013-3030.
[11] Li G,Xie S P.Tropical biases in CMIP5 multimodel ensemble:The excessive equatorial Pacific cold tongue and double ITCZ problems[J].Journal of Climate,2014,27(4):1765-1780.
[12] Tang S,Gleckler P,Xie S,et al.Evaluating the diurnal and semidiurnal cycle of precipitation in CMIP6 models using satellite-and ground-based observations[J].Journal of Climate,2021,34(8):3189-3210.
[13] Cui Z,Zhang G J,Wang Y,et al.Understanding the roles of convective trigger functions in the diurnal cycle of precipitation in the NCAR CAM5[J].Journal of Climate,2021,34(15):6473-6489.
[14] Dai A.Precipitation characteristics in eighteen coupled climate models[J].Journal of Climate,19(18):4605-4630.
[15] Song X,Zhang G J.Convection parameterization,tropical Pacific double ITCZ,and upper-ocean biases in the NCAR CCSM3.Part I:Climatology and atmospheric feedback[J].Journal of Climate,2009,22(16):4299-4315.
[16] Si W,Liu H,Zhang X,et al.Double ITCZs in Coupled Ocean-Atmosphere Models:Progress in CMIP6.2021,48(23).
[17] Bellucci A,Gualdi S,Navarra A.The double-ITCZ syndrome in coupled general circulation models:The role of large-scale vertical circulation regimes[J].Journal of Climate,2010,23(5):1127-1145.
[18] Zhang G J,Song X,Wang Y.The double ITCZ syndrome in GCMs:A coupled feedback problem among convection,clouds,atmospheric and ocean circulations[J].Atmospheric Research,2019,229:255-268.
[19] Sun Y,Solomon S,Dai A,et al.How often does it rain?[J].Journal of climate,2006,19(6):916-934.
[20] Wilcox E M,Donner L J.The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model[J].Journal of Climate,2007,20(1):53-69.
[21] Stephens G L,L’Ecuyer T,Forbes R,et al.Dreary state of precipitation in global models[J].Journal of Geophysical Research:Atmospheres,2010,115(D24).
[22] Chu W,Lin Y,Zhao M.Implementation and Evaluation of a Double-Plume Convective Parameterization in NCAR CAM5[J].Journal of Climate,2022,35(2):617-637.
[23] Arakawa A.The cumulus parameterization problem:Past, present,and future[J].Journal of Climate,2004,17(13):2493-2525.
[24] Rio C,Del Genio A D,Hourdin F.Ongoing breakthroughs in convective parameterization[J].Current Climate Change Reports,2019,5(2):95-111.
[25] Yang B,Qian Y,Lin G,et al.Uncertainty quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate[J].Journal of Geophysical Research:Atmospheres,2013,118(2): 395-415.
[26] Zhang Y, Li J,Yu R,et al.A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling:Model description,baseline evaluation,and sensitivity exploration[J].Journal of Advances in Modeling Earth Systems,2019,11(6):1685-1714.
[27] Li X,Zhang Y,Peng X,et al.Using a single column model(SGRIST1.0)for connecting model physics and dynamics in the Global-to-Regional Integrated forecast SysTem(GRIST-A20.8)[J].Geoscientific Model Development Discussions,2020.(preprint for discussions)
[28] Zhang G J,McFarlane N A.Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model[J].Atmosphere-ocean,1995,33(3):407-446.
[29] Park S,Bretherton C S.The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model[J].Journal of Climate,2009,22(12):3449-3469.
[30] Bretherton C S,Park S.A new moist turbulence parameterization in the Community Atmosphere Model[J].Journal of Climate,2009,22(12):3422-3448.
[31] Morrison,Gettelman,et al.A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model,version 3(CAM3).Part I:Description and numerical tests[J].Journal of Climate,2008,21(15):3642-3659.
[32] Park S,Bretherton C S,Rasch P J.Integrating cloud processes in the Community Atmosphere Model,version 5[J].Journal of Climate,2014,27(18):6821-6856.
[33] Iacono M J,Delamere J S,Mlawer E J,et al.Radiative Forcing by Long-Lived Greenhouse Gases:Calculations with the AER Radiative Transfer Models[J].Journal of Geophysical Research:Atmospheres,2008,113(D13).
[34] Niu G Y,Yang Z L,Mitchell K,et al.2011.The community Noah land surface model with multi-parameterization options(Noah-MP):1.Model description and evaluation with local-scale measurements[J].Journal of Geophysical Research:Atmospheres,2001,116:D1210.
[35] Li X,Zhang Y,Peng X,et al.Improved Climate Simulation by using a Double-Plume Convection Scheme in a Global Model.Journal of Geophysical Research: Atmospheres,2022,127(11).
[36] Neale R B,Richter J H,Jochum M.The impact of convection on ENSO:From a delayed oscillator to a series of events[J].Journal of climate,2008,21(22):5904-5924.
[37] Taylor K E,Williamson D,Zwiers F. The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations,Program for Climate Model Diagnosis and Intercomparison(PCMDI)Report 60[J].Lawrence Livermore National Laboratory,University of California,2000(60):1-28.
[38] Adler R F,Sapiano M R P,Huffman G J,et al.The Global Precipitation Climatology Project(GPCP)monthly analysis(new version 2.3)and a review of 2017 global precipitation[J].Atmosphere,2018,9(4):138.
[39] Stephens G L,Vane D G,Boain R J,et al.The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation[J].Bulletin of the American Meteorological Society,2002,83(12):1771-1790.
[40] Loeb N G,Wielicki B A,Doelling D R,et al.Toward optimal closure of the Earth’s top-of-atmosphere radiation budget[J].Journal of Climate,2009,22(3):748-766.
[41] Hwang Y T,Frierson D M W. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean[J].Proceedings of the National Academy of Sciences,2013,110(13): 4935-4940.
[42] Xiang B,Zhao M,Held I M,et al.Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations[J].Geophysical Research Letters,2017,44(3):1520-1527.
[43] Bellucci A,Gualdi S,Navarra A.The double-ITCZ syndrome in coupled general circulation models:The role of large-scale vertical circulation regimes[J].Journal of Climate,2010,23(5):1127-1145.
[44] Hirota N,Takayabu Y N,Watanabe M,et al.Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models[J].Journal of Climate,2011,24(18):4859-4873.
备注/Memo
收稿日期:2022-11-25
基金项目:国家自然科学基金资助项目(42075151、42205160)
通信作者:彭新东.E-mail:pengxd@cma.gov.cn