PAN Jie,LI Maoshan,GONG Ming,et al.Characterization of Raindrop Spectra on the Southeast Tibetan Plateau and East Slopes[J].Journal of Chengdu University of Information Technology,2023,38(06):709-719.[doi:10.16836/j.cnki.jcuit.2023.06.013]
青藏高原东南部及东坡雨滴谱特征的研究
- Title:
- Characterization of Raindrop Spectra on the Southeast Tibetan Plateau and East Slopes
- 文章编号:
- 2096-1618(2023)06-0709-11
- 关键词:
- 雨滴谱; 青藏高原东南部及其东坡; Gamma分布; 参数化; 西南涡
- Keywords:
- raindrop distribution; Southeast Tibetan Plateau and its east slope; Gamma distribution; parameterization; Southwest twister
- 分类号:
- P468
- 文献标志码:
- A
- 摘要:
- 为研究青藏高原东南部地区及东坡的云微物理特征,利用2021年青藏高原东坡峨眉山站点以及青藏高原东南部林芝站点雨滴谱仪的观测资料,分析了青藏高原东南部及其东坡不同季节的3类降水云的雨滴谱特征及典型个例降水与西南涡之间的关系。结果表明:峨眉山站点和林芝站点的主要降水类型都为层状云降水,年累计降水量较大,降水持续时间短,降水频次多; 峨眉山站点4个季节对应粒子数浓度峰值的粒径为1.5 mm左右,而林芝站点4个季节对应粒子数浓度峰值的粒径为1 mm左右,其中层状云雨滴谱浓度最低,主要贡献在小粒径上。峨眉山地区的3类云降水在Gamma拟合中,与实测相比模拟较好的粒径区间在1.5~4.0 mm; 而林芝站点的拟合曲线与实测曲线的趋势较为相似,模拟较好的粒径区间在1.3~4.5 mm; 因此,峨眉山站点和林芝站点的雨滴谱在适当范围内是能够运用Gamma分布模拟的。伴随较深厚的气旋性涡旋出现的降水强度较大,48 h累积雨量较大,雨滴谱分布的谱宽较宽,粒子数浓度在小粒径时更高,西南涡的发生发展造成的降水对本次研究区域的雨滴谱分布有很大的影响。
- Abstract:
- To study the cloud microphysical characteristics of the southeastern Tibetan Plateau and its eastern slope, the raindrop spectrometer observations in 2021 at the Emei Mountain site on the eastern slope of the Tibetan Plateau and the Linzhi site on the southeastern Tibetan Plateau were used to analyze the raindrop spectral characteristics of three types of precipitation clouds in different seasons on the southeastern Tibetan Plateau and its eastern slope and the relationship between typical individual cases of precipitation and The relationship between the southwestern vortex and the typical precipitation cases were analyzed. The results show that both the Emei Mountain and Linzhi sites experience stratiform cloud precipitation as their main precipitation type. The annual cumulative precipitation is higher, the precipitation duration is shorter, and the precipitation is more frequent. The particle size corresponding to the peak particle number concentration is about 1.5 mm in four seasons at the Emei Mountain site, while the particle size corresponding to the peak particle number concentration is about 1 mm in four seasons at the Linzhi site, where the lowest concentration of stratiform cloud raindrop spectrum is mainly contributed to the small particle size.In the Gamma fit for the three types of cloud precipitation in the Emei Mountain area, the better-simulated particle size interval is between 1.5 mm and 4.0 mm, compared to the measured data. However, the fitted curve for the Linzhi site has a more similar trend to the measured data, and the better-simulated particle size interval is between 1.3 mm and 4.5 mm. Therefore, the raindrop spectra of the Emei Mountain site and the Linzhi site are within the appropriate range to be able to apply Gamma distribution simulations are possible. The precipitation accompanying the deeper cyclonic vortex appears to be more intense, the 48 h accumulated rainfall is larger, the spectral width of the raindrop spectrum distribution is wider, and the particle number concentration is higher at small particle size, and the precipitation caused by the development of the southwest vortex has a great influence on the raindrop spectrum distribution in this study area.
参考文献/References:
[1] 陈宝君,李子华,刘吉成,等.三类降水云雨滴谱分布模式[J].气象学报,1998(4):123-129.
[2] Marshall J S,Palmer W M K.The Distribution of Raindrops with Size[J].Journal of Meteorology,1948,5(4):165-166.
[3] 丁建芳,程博.河南省层状云降水雨滴谱特征分析[J].气象与环境科学, 2022, 45(1):55-64.
[4] 王秋淞,王福增,刘俊卿.安徽淮南2016年夏季雨滴谱特征的研究[J].气象科技进展,2021,11(4).
[5] 柳臣中,周筠珺,谷娟,等.成都地区雨滴谱特征[J].应用气象学报,2015,26(1):112-121.
[6] 常祎.青藏高原那曲地区夏季云微物理特征和降水形成机制的飞机观测研究[D].北京:中国气象科学研究院,2019.
[7] 刘黎平,郑佳锋,阮征,等.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J].气象学报,2015,74(4):635-647.
[8] Atlas D,Srivastava R C,Sekhon R S.Doppler radar characteristics of precipitation at vertical incidence[J].Reviews of Geophysics,1973,11(1):1-35.
[9] 王可法,张卉慧,张伟,等.Parsivel激光雨滴谱仪观测降水中异常数据的判别及处理[J].气象科学,2011,31(6):732-736.
[10] 王文玲,张微,高玉宏.基于Parsivel激光雨滴谱仪的夏季雨滴谱特征分析[J].黑龙江气象, 2018,35(1).
[11] Ji L,Chen H N,Li L,et al.Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing,Northern China[J].Remote Sens.,2019,11(12):1479.
[12] 霍朝阳,阮征,魏鸣,等.雨滴谱GAMMA函数拟合方法的分析与评估[J].科学技术与工程,2018,18(34):1-10.
[13] 郑娇恒,陈宝君.雨滴谱分布函数的选择:M-P和Gamma分布的对比研究[J].气象科学,2007,27(1):17-25.
[14] Ulbrich C W.Natural variations in the analytical form of the raindrop size distribution [J].J.Climate Appl.Meteor,1983,22(10):1764-1775.
[15] 舒磊,李茂善,华生,等.青藏高原东部玉树地区雨滴谱特征及云微物理结构分析[J].气象科技进展, 2021(4).
[16] 房彬,郭学良,肖辉.辽宁地区不同降水云系雨滴谱参数及其特征量研究[J].大气科学,2016,40(6):1154-1164.
[17] Bringi V N,Chandrasekar V,Hubbert J,et al.Raindrop size distribution in different climatic regimes from disdrometer and dualpolarized radar analysis[J].J.Atmos.Sci.,2003,60(2):354-365.
[18] Wen Long,Zhao Kun,Wang Mengyao,et al.Seasonal Variations of Observed Raindrop Size Distribution in East China[J].Advances in Atmospheric Sciences,2019, 36(4).
[19] 韩辉邦,张博越,马守存,等.黄河上游地区降水雨滴谱特征分析[J].沙漠与绿洲气象,2019,13(6):119-125.
[20] Kirankumar N V P,Narayana R T,Radhakrishna B,et al.Statistical characteristics of raindrop size distribution in southwest monsoon season[J].Journal of Applied Meteorology and Climatology,2008,47(2):576590.
[21] 濮江平,姜爱军,白卡娃,等.南京地区不同云状降水雨滴谱分析研究[A].第十五届全国云降水与人工影响天气科学会议暨中国人工影响天气事业50周年纪念大会论文集[C].北京:气象出版社,2008:393-397.
[22] 王洪,雷恒池,杨洁帆,等.山东不同云系降水微物理参数特征[J].大气科学,2020,44(2):315-326.
[23] 于建宇,李茂善,阴蜀城,等.青藏高原那曲地区云降水微观特征雨滴谱分析[J].成都信息工程大学学报,2020,35(2):188-194.
[24] 吴亚昊,刘黎平,周筠珺,等.雨滴谱的变化对降水估测的影响研究[J].高原象,2016,35(1):220-230.
[25] 王莹珏,李平,郑佳锋,等.四川省稻城地区雨滴谱特征研究[J].高原山地气象研究, 2021,41(1).
[26] 王改利,周任然,扎西索郎,等.青藏高原墨脱地区云降水综合观测及初步统计特征分析[J].气象学报,2021,79(5):841-852.
[27] 李山山,王晓芳,万蓉,等.青藏高原东坡不同海拔区域的雨滴谱特征[J].高原气象,2020,39(5):899-911.
[28] 金祺,袁野,刘慧娟,等.江淮之间夏季雨滴谱特征分析[J].气象学报,2015,73(4):778-788.
[29] Chen B J,Hu Z Q,Liu L P,et al.Raindrop size distribution measurements at 4,500m on the Tibetan Plateau during TIPEXIII[J].J.Geophys.Res.,2017,122(20):11092-11106.
[30] Wu Y H,Liu L P.Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China[J].Adv.Atmos.Sci.,2017,34(6):727-736.
[31] 李跃清.西南涡涡源研究的有关新进展[J].高原气象, 2021(6):174-186.
[32] 李国平,陈佳.西南涡及其暴雨研究新进展[J].暴雨灾害, 2018(4):3-12.
相似文献/References:
[1]温 凯,王福增,王秋淞,等.遵义地区一次暴雨雨滴谱特征及在雷达中的应用[J].成都信息工程大学学报,2021,36(06):615.[doi:10.16836/j.cnki.jcuit.2021.06.006]
WEN Kai,WANG Fuzeng,WANG Qiusong,et al.Raindrop Size Distribution Characteristics of a Rainstorm in Zunyi Area and its Application in Radar[J].Journal of Chengdu University of Information Technology,2021,36(06):615.[doi:10.16836/j.cnki.jcuit.2021.06.006]
备注/Memo
收稿日期:2022-11-01
基金项目:四川省自然科学基金资助项目(2022NSFSC0217); 第二次青藏高原综合科学考察研究资助项目(2019QZKK0103); 国家重点研发计划资助项目(2017YFC1505702); 国家自然科学基金资助项目(42230610、41675106)
通信作者:李茂善.Email:lims@cuit.edu.cn