PDF下载 分享
[1]王家珉,李田家,顾桃峰,等.一种基于深度卷积神经网络的电磁干扰识别与抑制方法[J].成都信息工程大学学报,2024,39(01):43-49.[doi:10.16836/j.cnki.jcuit.2024.01.008]
 WANG Jiamin,LI Tianjia,GU Taofeng,et al.A Method of Electromagnetic Interference Identification and Suppression based on Deep Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2024,39(01):43-49.[doi:10.16836/j.cnki.jcuit.2024.01.008]
点击复制

一种基于深度卷积神经网络的电磁干扰识别与抑制方法

参考文献/References:

[1] Vaccarono M,Chandrasekar C V,Bechini R.Survey on Electromagnetic Interference in Weather Radars in Northwestern Italy[J].Environments,2019,6(12):126.
[2] Saltikoff E,Cho J Y N,Tristant P. The Threat to Weather Radars by Wireless Technology[J].Bulletin of the American Meteorological Society,2016,97(7):1159-1167.
[3] Cho J Y N.Signal Processing Algorithms for the Terminal Doppler Weather Radar:Build 2[J].Signal Processing Algorithms for the Terminal Doppler,2010:89.
[4] Yin J,Unal C M H,Russchenberg H W J.Narrow-Band Clutter Mitigation in Spectral Polarimetric Weather Radar[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(8):4655-4667.
[5] Lakshmanan V,Hondl K,Stumpf G.Quality control of weather radar data using texture features and a neural network[C].Preprints,31st Radar Conference,2003:522-525.
[6] Cho J Y N.A New Radio Frequency Interference Filter for Weather Radars[J].Journal of Atmospheric and Oceanic Technology,2017,34(7):1393-1406.
[7] Simonyan K,Zisserman A.Very Deep Convolutional Networks for Large-Scale Image Recognition[C].International Conference on Learning Representations.Computational and Biological Learning Society,2015.
[8] Krizhevsky A,Sutskever I,Hinton G E. ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[9] Long J,Shelhamer E,Darrell T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[10] Chen L C,Papandreou G,Kokkinos I.Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs[J].Computer Science,2014(4):357-361.
[11] Chen L C,Papandreou G,Kokkinos I.DeepLab:Semantic Image Segmentation with Deep Convolutional Nets,Atrous Convolution,and Fully Connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848.
[12] Nishiguchi K,Kobayashi M.Improved algorithm for estimating pulse repetition intervals[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):407-421.
[13] He K,Zhang X,Ren S,et al.Deep Residual Learning for Image Recognition[J].computer vision and pattern recognition,2016:770-778.
[14] Ronneberger O.U-Net Convolutional Networks for Biomedical Image Segmentation[J].Medical Image Computing and Computer-Assisted Intervention(MICCAI),Springer,LNCS,2017,9351:234-241.
[15] Chen L C,Zhu Y,Papandreou G,et al.Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C].European Conference on Computer Vision.Springer,Cham,2018.
[16] Chollet F.Xception:Deep learning with depthwise separable convolutions[J].Proceedings of the IEEE conference on computer vision and pattern recognition.2017:1251-1258.
[17] Chen L C,Papandreou G,Schroff F.Rethinking Atrous Convolution for Semantic Image Segmentation[J].Computer Vision and Pattern Recognition,2017:801-818.
[18] Kanopoulos N,Vasanthavada N,Baker R L.Design of an image edge detection filter using the Sobel operator[J].IEEE Journal of Solid-State Circuits,1988,23(2):358-367.
[19] Loshchilov I,Hutter F.SGDR:Stochastic Gradient Descent with Warm Restarts[J].ICLR&apos,2016(9):17.

备注/Memo

收稿日期:2023-03-08

更新日期/Last Update: 2024-02-29