HUANG Yan,WU Zezhong.Application of Improved Sines and Cosines Optimization Algorithm in Bus Scheduling Model[J].Journal of Chengdu University of Information Technology,2024,39(01):119-130.[doi:10.16836/j.cnki.jcuit.2024.01.018]
改进正余弦优化算法及在公交排班模型中应用
- Title:
- Application of Improved Sines and Cosines Optimization Algorithm in Bus Scheduling Model
- 文章编号:
- 2096-1618(2024)01-0119-12
- Keywords:
- sine cosine algorithm; normal variation factor; large-scale optimization problem; bus scheduling
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 针对正余弦算法在搜索过程中存在收敛精度低、易陷入局部最优等缺点,提出一种基于正态变异自适应的改进正余弦算法(MSCA)。首先,将变异操作引入SCA算法,进行种群初始化; 其次,引入惯性权重来修正位置更新方程,保留更多的信息和产生有前途的候选解; 提出一种平衡勘探开发的非线性转换参数递减策略,在搜索过程中跳出局部最优解状态; 最后,改进基于正态变异算子的位置更新策略,增加局部搜索空间。再选取26个国际标准测试函数对改进的算法进行测试,结果表明,MSCA算法在收敛精度、收敛速度和收敛稳定性上,更优于其他改进算法。除此之外,还将改进后的MSCA应用在城市公交排班中,通过实验仿真得到改进的MSCA的最优目标函数值优于原有算法SCA,以及公交排班符合客流的实际分布。
- Abstract:
- Aiming at the shortcomings of the sine-cosine algorithm in the search process,such as low convergence accuracy and easy to fall into local optimum,this paper proposes an improved sine-cosine algorithm(MSCA)based on normal mutation adaptation.First of all, the mutation operation is introduced into the SCA algorithm to initialize the population; Secondly, the inertial weights are introduced to modify the position update equation to retain more information and generate promising candidate solutions.A non-linear conversion parameter decline strategy for balanced exploration and development is proposed,which jumps out of the local optimal solution state during the search process.Finally,the location update strategy based on the normal mutation operator is improved,and the local search space is increased.Then 26 international standard test functions are seleted to test the improved algorithm.The results show that the MSCA algorithm is better than other improved algorithms in terms of convergence accuracy,convergence speed and convergence stability.In addition,the improved MSCA is also used in the practical application of urban bus scheduling.The optimal objective function value of the improved MSCA obtained through experimental simulation is better than the original algorithm SCA,and the bus scheduling is in line with the actual distribution of passenger flow.It fully reflects the common interests of bus operators and passengers.
参考文献/References:
[1] Kennedy J,Eberhart R.Particle swarm optimization[C].In:Proceeding of International Conference on Neural Networks.Perth,Australia:IEEE,1995:1942-1948.
[2] Mirjalili S,Lewis A.The Whale Optimization Algorithm[J].Advances in Engineering Software,2016,95:51-67.
[3] Arora S,Singh S.Butterfly optimization algorithm:a novel approach for global optimization[J].Soft Computing,2019,23(3):715-734.
[4] Mirjalili S.Moth-flame optimization algorithm:a novel nature-inspired heuristic paradigm[J].Knowledge-Based Systems,2015,89(11):228-249.
[5] Wang Gaige,Deb S,Cui Zhihua.Monarch butterfly optimization[J].Neural Computing and Applications,2019,31(7):1-20.
[6] Wang Gaige,Suash D,Santos C L D.Earthworm optimization algo-rithm:a bio-inspired metaheuristic algorithm for global optimization problems[J].International Journal of Bio-Inspired Computation,2018,12(1):1-22.
[7] Wang Gaige,Deb S,Coelho L D S.Elephant herding optimization[C].In:Proceeding of International Symposium on Computational and Business Intelligence.Bali,Indonesia:IEEE,2015:1-5.
[8] Seyedali Mirjalili.SCA:A Sine Cosine Algorithm for solving optimization problems[J].Systems,2016,96:120-133.
[9] 徐松金,龙文.求解高维优化问题的改进正弦余弦算法[J].计算机应用研究,2018,35(9):20-23.
[10] 张校非,白艳萍,郝岩,等.改进的正弦余弦算法在函数优化问题中的研究[J].重庆理工大学学报(自然科学版),2017,31(2):146-152.
[11] Long W,Wu T,Liang X,et al.Solving high-dimensional global optimization problems using an improved sine cosine algorithm[J].Expert Systems with Applications,2018,123:108-126.
[12] Mirjalili,Seyedali.The Ant Lion Optimizer[J].Advances in Engineering Software,2015,83:80-98.
[13] Mirjalili S,Mirjalili S M,Lewis A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69:46-61.
[14] Mirjalili S,Dong J S,Lewis A.Ant Colony Optimizer:Theory,Literature Review,and Application in AUV Path Planning:Methods and Applications[M].Nature-Inspired Optimizers,2020.
[15] Kroon J D,Laan P V D.A generalization of Friedman’s rank statistic[J].Statistica Neerlandica,2010,37(1):1-14.
[16] Van Elteren P.On the combination of independent two-sample test of Wilcoxon[J].Chemosphere,1960,37(3):81-87.
[17] Goldberg D E.Genetic Algorithm in Search Optimization and Machine Learning[J].Addison Wesley,1989,xiii(7):2104-2116.
[18] Rudolph G.Local convergence rates of simple evolutionary algorithms with Cauchy mutations[J].Evolutionary Computation IEEE Transactions on,1998,1(4):249-258.
[19] Emad N.A modified flower pollination algorithm for global optimiza-tion[J].Expert Systems with Applications,2016,57(9):192-203.
[20] Yongjun S,Xilu W,Yahuan C,et al.A modified whale optimization algorithm for large-scale global optimization problems[J].Expert Systems with Applications,2018,27(8):563-577.
[21] 杨磊,刘卫朋,周磊.基于改进的随机公交调度问题的数学模型[J].河北工业大学学报,2010,39(1):74-78.
备注/Memo
收稿日期:2021-09-29
基金项目:国家自然科学基金资助项目(71962030)