ZHONG Haobin,WANGN Lei,LI Xiehui,et al.Simulation of a Rainstorm in the Sanjiangyuan by Assimilation of Three Kinds of Satellite Microwave Data[J].Journal of Chengdu University of Information Technology,2024,39(02):183-193.[doi:10.16836/j.cnki.jcuit.2024.02.009]
3种卫星微波资料同化在三江源一次暴雨的模拟研究
- Title:
- Simulation of a Rainstorm in the Sanjiangyuan by Assimilation of Three Kinds of Satellite Microwave Data
- 文章编号:
- 2096-1618(2024)02-0183-11
- Keywords:
- Sanjiangyuan; precipitation; WRF; data assimilation; microwave radiance data
- 分类号:
- P456.7
- 文献标志码:
- A
- 摘要:
- 为了解卫星微波资料同化是否能改善三江源降水模拟,针对三江源2018年8月24日短时强降水个例,利用NCEP FNL再分析数据,分别加入NOAA-18的AMSUA、MHS和NPP的ATMS微波资料同化,基于WRF模式及其三维变分同化系统对三江源区域此次降水过程进行循环同化实验,对模拟结果进行分析和讨论。结果表明,各卫星资料对背景场有着不同的调整作用,MHS对水汽影响最大并且多为增湿作用,AMSUA对温度调整最明显,3种资料对纬向风的影响结果几乎一样,对径向风的调整幅度较接近。在加入各卫星资料同化后,降水模拟有一定改善,对于各站点降水随时间变化模拟,效果MHS>ATMS>AMSUA; 对于模拟的6 h累计降水量分布状况以及从降水评分结果,效果MHS,ATMS>AMSUA,对于模拟的24 h累计降水量以及检验结果来看,MHS>ATMS>AMSUA,综合来看,本次三江源降水事件,MHS效果改善最好,其次是ATMS,AMSUA效果稍差。
- Abstract:
- To understand whether satellite microwave data assimilation can improve the precipitation simulation in Sanjiangyuan, a case of short-time heavy precipitation in summer in Sanjiangyuan was studied(August 24, 2018).Using NCEP FNL to re-analyze the data, adding MHS and AMSUA of NOAA-18 and ATMS of NPP data assimilation, based on the WRF model and its three-dimensional variational assimilation system, the cyclic assimilation experiment of the precipitation process in the Sanjiangyuan was carried out, and the simulation results were analyzed and discussed. The results show that the adjustment effects on the background field vary from satellite data. MHS has the largest impact on water vapor and most of it is humidification. AMSUA has the most obvious adjustment on temperature. The effects of the three data on the zonal wind are almost the same, and the adjustment range of the radial wind is relatively close. After the assimilation of satellite data, the precipitation simulation was improved to a certain extent. For each station precipitation change with time simulation, the effect was MHS > ATMS > AMSUA. In terms of the simulated 6-hour cumulative precipitation distribution and the results of precipitation score, effect MHS, ATMS > ATMS; in terms of simulated 24-hour cumulative precipitation and test results, MHS > ATMS > AMSUA. In summary, the effect of MHS improved best in this precipitation event, followed by ATMS, and AMSUA results were slightly worse.
参考文献/References:
[1] 蔡永祥,罗少辉,王军,等.三江源地区1961-2019年降水量时空变化特征[J].草业科学,2022,39(1):10-20.
[2] 刘晓琼,吴泽洲,刘彦随,等.1960-2015年青海三江源地区降水时空特征[J].地理学报,2019,74(9):1803-1820.
[3] 马秀梅,刘晓燕,代青措.副热带高压影响下青海东部2次暴雨对比分析[J].青海科技,2017,24(3):72-77.
[4] 雷彦,张广伟.青海东北部地区一次暴雨天气成因分析[J].现代农业科技,2020,(22):162-163.
[5] 王宗皓.卫星探测辐射率在数值天气预报中的直接应用[J].应用气象学报,1995,1995(1):101-108.
[6] 杨引明,杜明斌,张洁.FY-3A微波资料在“莫拉克”台风预报中的同化实验[J].热带气象学报,2012,28(1):23-30.
[7] 薛纪善.气象卫星资料同化的科学问题与前景[J].气象学报,2009,67(6):903-911.
[8] 俞兆文,刘健文,黄江平,等.同化AMSR2微波成像资料对WRF模式暴雨预报的影响[J].气象灾害防御,2017,24(3):10-14.
[9] 潘宁,董超华,张文建.ATOVS辐射率资料的直接变分同化实验研究[J].气象学报,2003,61(2):226-236.
[10] Kulie M S,Bennartz R,Greenwald T J,et al.Uncertainties in Microwave Properties of Frozen Precipitation: Implications for Remote Sensing and Data Assimilation[J].Journal of AtmosphericSciences,2010,67(11),3471-3487.
[11] Yang J,Duan K,Wu J,et al.Effect of data assimilation using WRF-3DVA for heavy rain prediction on the northeastern edge of the Tibetan Plateau[J].Adv Meteor,2015,15:1-14.
[12] Andersson E,E Hólm,Bauer P,etal.Analysis and forecast impact of the main humidity observing systems.Quarterly Journal of the Royal Meteorological Society:A journal of the atmospheric sciences[J].applied meteorology and physical oceanography,2007,133(627):1473-1485.
[13] Schwartz C S,Liu Z,Chen Y,et al.Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot[J].Weather and forecasting,2012,27(2):424-437.
[14] Wang Y,Liu Z,Yang S,et al.Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over north China[J].Journal of Geophysical Research:Atmospheres,2018,123(7):3374-3394.
[15] 王美月,王磊,李谢辉,等.三江源地区暴雨的水汽输送源地及路径研究[J].高原气象,2022,41(1):68-78.
[16] 杨显玉,吕雅琼,文军,等.三江源区域夏季降水异常的水汽输送及源地特征的研究[J].高原气象,2022,41(2):465-476.
[17] 任英杰,雍斌,鹿德凯,等.全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估[J].湖泊科学,2019,31(2):560-572.
[18] Ehsan,Sharif,Reinhold,et al.Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results[J].Remote Sensing,2016,8(2).
[19] Liu Z.Comparison of integrated multisatellite retrievals for GPM(IMERG)and TRMM multisatellite precipitation analysis(TMPA)monthly precipitation products:initial results[J].Journal of Hydrometeorology,2016,17(3):777-790.
[20] 汪梓彤,李石宝,张志友.GPM近实时降水产品在青藏高原的多尺度精度评价[J].人民黄河,2021,43(4):43-49.
[21] 盛夏,石玉立,丁海勇.青藏高原GPM降水数据空间降尺度研究[J].遥感技术与应用,2021,36(3):571-580.
[22] 王在文,梁旭东,范水勇,等.数值模式降水评分对分辨率的敏感性初探[J].暴雨灾害,2016,35(1):10-16.
[23] 吴启树,韩美,刘铭,等.基于评分最优化的模式降水预报订正算法对比[J].应用气象学报,2017,28(3):306-317.
相似文献/References:
[1]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(02):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[2]田 姗,范广洲.,胡德强,等.春季青藏高原南侧低层垂直环流圈的年际变化特征分析[J].成都信息工程大学学报,2016,(02):190.
TIAN Shan,FAN Guang-zhou-,HU De-qiang,et al.Characteristic of the Vertical Circulation over the Low-level of
the South of Tibetan Plateau during Spring[J].Journal of Chengdu University of Information Technology,2016,(02):190.
[3]周芳存,巩远发,阿米娜.麦图迪尔.中国西北地区土壤湿度的气候特征[J].成都信息工程大学学报,2016,(增刊1):43.
[4]张舒姝,颜 萍,匡凤雪.都江堰气候变化特征分析[J].成都信息工程大学学报,2017,(增刊1):65.
[5]王 林,王 磊,李 哲,等.青藏高原春季土壤湿度对长江中下游地区
初夏短期气候影响的数值模拟[J].成都信息工程大学学报,2017,(02):184.[doi:10.16836/j.cnki.jcuit.2017.02.012]
WANG Lin,WANG Lei,LI Zhe,et al.An Numerical Simulation on the Effect of Spring Soil Moisture in
Tibetan Plateau on Early Summer Short-term Climate over
Middle and Lower Reaches of Yangtze River[J].Journal of Chengdu University of Information Technology,2017,(02):184.[doi:10.16836/j.cnki.jcuit.2017.02.012]
[6]李星星,陈权亮,姚世博.热带大气季节内振荡对华南后汛期降水的影响[J].成都信息工程大学学报,2017,(02):192.[doi:10.16836/j.cnki.jcuit.2017.02.013]
LI Xing-xing,CHEN Quan-liang,YAO Shi-bo.Impact of the Madden-Julian Oscillation on Post-flood
Season Precipitation in South China[J].Journal of Chengdu University of Information Technology,2017,(02):192.[doi:10.16836/j.cnki.jcuit.2017.02.013]
[7]李依瞳,赵琳娜,巩远发,等.春季南支槽与中国降水的关系及成因[J].成都信息工程大学学报,2017,(03):282.[doi:10.16836/j.cnki.jcuit.2017.03.009
]
LI Yi-tong,ZHAO Lin-na,GONG Yuan-fa,et al.The Relationship and Formation of Springtime Southern
Branch Trough and Precipitation in China[J].Journal of Chengdu University of Information Technology,2017,(02):282.[doi:10.16836/j.cnki.jcuit.2017.03.009
]
[8]代昕鹭,陈葆德,张 旭,等.WARMS 2.0中边界层参数化方案对
一次台风外围降水模拟预报的影响[J].成都信息工程大学学报,2017,(05):513.[doi:10.16836/j.cnki.jcuit.2017.05.009]
DAI Xin-lu,CHEN Bao-de,ZHANG Xu,et al.Impact of Different Boundary Layer Parameterization Schemes on the
Numerical Smiulation for a Typhoon Rain Event in WARMS 2.0[J].Journal of Chengdu University of Information Technology,2017,(02):513.[doi:10.16836/j.cnki.jcuit.2017.05.009]
[9]周天财,孙 建,于 欢.1980-2013年青藏高原气候时空变化特征研究[J].成都信息工程大学学报,2017,(05):524.[doi:10.16836/j.cnki.jcuit.2017.05.010]
ZHOU Tian-cai,SUN Jian,YU Huan.Spatial and Temporal Patterns of Climate in the Tibetan Plateau(1980-2013)[J].Journal of Chengdu University of Information Technology,2017,(02):524.[doi:10.16836/j.cnki.jcuit.2017.05.010]
[10]王 超,肖天贵,假 拉,等.西藏地区降雪降水天数比率(SD/PD)变化特征分析[J].成都信息工程大学学报,2017,(05):532.[doi:10.16836/j.cnki.jcuit.2017.05.011]
WANG Chao,XIAO Tian-gui,JIA La,et al.Changes in Days of Snowfall/Precipitation Ratio in Tibet[J].Journal of Chengdu University of Information Technology,2017,(02):532.[doi:10.16836/j.cnki.jcuit.2017.05.011]
备注/Memo
收稿日期:2023-02-13
基金项目:第二次青藏高原综合科学考察研究资助项目(2019QZ KK0105); 国家自然科学基金面上资助项目(41971308)