FANG Zhentian,CHEN Yun,XIAO Tiangui,et al.Characteristics of Westward Vortex and its Impact on “21.7” Henan Rainstorm[J].Journal of Chengdu University of Information Technology,2024,39(03):291-299.[doi:10.16836/j.cnki.jcuit.2024.03.005]
西行低涡特征及其对“21.7”河南暴雨影响分析
- Title:
- Characteristics of Westward Vortex and its Impact on “21.7” Henan Rainstorm
- 文章编号:
- 2096-1618(2024)03-0291-09
- Keywords:
- mesoscale meteorology; Henan rainstorm; westward vortex; movement path; characteristic analysis
- 分类号:
- P458.1+21.1
- 文献标志码:
- A
- 摘要:
- 2021年7月河南出现极端暴雨,黄淮地区存在一个自东向西移动的低涡,是降水过程发展增强的主要影响系统。针对低涡的研究主要集中于自西向东的移动路径,很少考虑西行低涡的机制及特征。利用地面常规气象资料、区域气象站及雷达等非常规观测资料、ERA5再分析资料,对“21.7”暴雨的大气环流形势、西行低涡移动路径、各层系统配置及低涡西行原因进行特征分析,并从水汽、热力、动力及对流触发等方面分析西行低涡对“21.7”暴雨的影响,结果表明:(1)“21.7”河南暴雨期间大气环流形势稳定,黄淮地区为典型的“鞍型场”,西行低涡移动路径为先向西南后向西北。(2)西行低涡各层系统配置复杂,低涡东侧副高及台风“烟花”西进使低涡附近偏东急流加强,低涡自东向西移动。(3)西行低涡水汽条件充沛、动力条件旺盛、热力条件充足,低涡与低层切变线、地面辐合线共同作用,使对流触发条件增强。
- Abstract:
- In July 2021, an extreme rainstorm occurred in Henan Province, and there was a vortex moving from east to west in the Huanghuai area, which was the main influencing system for the development and enhancement of the precipitation process. Although research on this vortex mainly focuses on its eastward movement,little attention has been paid to the mechanism and characteristics of its westward movement. Based on the conventional meteorological data, regional meteorological stations, radar, and other unconventional observation data, ERA5 reanalysis data, the characteristics of the atmospheric circulation situation, the moving path of the westward vortex, the configuration of each layer system and the reasons for the westward movement of the vortex were analyzed, and the influence of the westward vortex on the “21.7” rainstorm was analyzed from the aspects of water vapor, heat, power and convection triggering. The results show that:(1)During the rainstorm of “21.7” in Henan, the atmospheric circulation situation was stable, the Huang-Huai area was a typical “saddle field”, and the moving path of the westward vortex was from southwest to northwest.(2)The subtropical high on the east side of the vortex and the westward advance of typhoon “fireworks” strengthen the easterly jet near the vortex, and the vortex moves from east to west.(3)The westerly vortex has abundant water vapor conditions, strong dynamic conditions and sufficient thermal conditions. The vortex interacts with the low-level shear line and the ground convergence line to enhance the convective triggering conditions.
参考文献/References:
[1] Saulo C,Ruiz J,Skabar Y G.Synergism between the Low-Level Jet and Organized Convection at Its Exit Region[J].Monthly Weather Review,2007,135(4):1310-1326.
[2] 丁一汇,李吉顺,孙淑清,等.影响华北夏季暴雨的几类天气尺度系统分析[G]中国科学院大气物理研究所集刊(第9号),暴雨及强对流天气的研究.北京:科学出版社,1980:1-13.
[3] 周玉淑,刘璐,朱科锋,等.北京“7.21”特大暴雨过程中尺度系统的模拟及演变特征分析[J].大气科学,2014,38(5):12.
[4] 谌芸,孙军,徐珺,等.北京“7·21”特大暴雨极端性分析及思考(一)观测分析及思考[C].第九届全国灾害性天气预报技术研讨会.中国气象中心,2012.
[5] 孙军,谌芸,杨舒楠,等.北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J].气象,2012,38(10):1267-1277.
[6] Xu Jun,Li Rumeng,Zhang Qinghong,et al.Extreme large-scale atmospheric circulation associated with the “21·7” Henan flood[J].Science China Earth Sciences,2022(9):65.
[7] 蔡芗宁,陈涛,谌芸,等.对流层高层冷涡对“21·7”河南持续性极端暴雨影响分析[J].气象,2022,48(5):11.
[8] 孔期,符娇兰,谌芸,等.河南“21·7”特大暴雨过程中尺度低空急流和低涡的演变特征及成因分析[J].气象,2022,48(12):13.
[9] Chen Yongren,Li Yueqing.Convective Characteristics and Formation Conditions in an Extreme Rainstorm on the Eastern Edge of the Tibetan Plateau[J].Atmosphere,2021,12(3):381.
[10] Guan B,Waliser D E.2015.Detection of atmospheric rivers:Evaluation and application of an algorithm for global studies[J].Geophys.Res.:Atmos.,120(24):12514-12535.
[11] Jiang Yongqiang,Wang Yuan,Huang Hong,et al.A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field[J].Progress in Atmospheric Science(English Version),2012(6):52.
[12] Ntwali D,Ogwang B,Ongoma V.The impacts of topography on spatial and temporal rainfall distribution over Rwanda based on WRF model[J]. Atmospheric and Climate Sciences,V.2016,62013(6):145-157.
[13] Hersbach H,Bell B,Berrisford P,et al.The E R A 5 global reanalysis[J].Quart.J.Roy.Meteor.Soc,2020,146(730):1999-2049.
[14] Jiang Yongqiang,Wang Yuan,Chen Chaohui,et al.A Numerical Study of Mesoscale Vortex Formation in the Midlatitudes:The Role of Moist Processes[J].Advances in Atmospheric Sciences,2019,36(1):65-78.
[15] Davis R S.Flash flood forecast and detection methods:severe convec tive storms[J].Meteor Monogr,2001.69:481-525.
[16] Zhang Shunli,Tao Shiyan,Zhang Qingyun,et al.Large and Meso-α scale charact eristics of intense rainfall in the mid-and lower reaches of the Yangtze River[J].Chinese Sci.Bull.2002,47:779-786.
[17] 陈联寿,丁一汇.西太平洋台风概论[M].北京:科学出版社,1979.
[18] Ding Yihui,Wang Zunya,Song Yafang,eta1.The unpriced-dented freezing disaster in January 2008 in Southern China and its possible association with the global warming[J].Acta Meteorological Sinica,2008,22(4):538-558.
[19] 杨浩,周文,汪小康,等.“21·7”河南特大暴雨降水特征及极端性分析[J].气象, 2022(5):48.
[20] 喻谦花,吕哲源,李姝霞,等.郑州"7·20"特大暴雨卫星云图和双偏振雷达特征分析[J].气象与环境科学, 2022(2):45.
[21] 周鸣盛.我国北方50次区域性特大暴雨的环流分析[J].气象,1993,19(7):14-18.
[22] 雷雨顺.经向型持续性特大暴雨的合成分析[J].气象学报,1981,39(2):166-180.
[23] 张入财,田金华,陈超辉,等.郑州“7·20”特大暴雨极端性成因分析[J].气象与环境科学, 2022(2):45.
[24] 郑永骏,吴国雄,刘屹岷.涡旋发展和移动的动力和热力问题:PV-Q观点[J].气象学报, 2013, 71(2):13.
[25] 高守亭,周玉淑,冉令坤.我国暴雨形成机理及预报方法研究进展[J].大气科学,2018,42(4):14.
[26] 崔恒立,赵宇,王东仙,等.引发暴雨的低涡发生发展机制分析[J].灾害学,2016,31(2):7.
[27] 陈栋.引发川东暴雨的“鞍”型大尺度环流背景及西南涡发展的诊断验证[J].高原山地气象研究,2011,31(3):10.
[28] 苏爱芳,吕晓娜,崔丽曼,等.郑州“7.20”极端暴雨天气的基本观测分析[J].暴雨灾害,2021,40(5):10.
[29] 布和朝鲁,诸葛安然,谢作威,等.2021年“7.20”河南暴雨水汽输送特征及其关键天气尺度系统[J].大气科学,2022,46(3):20.
[30] 任宏昌,张恒德.郑州“7·20”暴雨的精细化特征及主要成因分析[J].河海大学学报:自然科学版,2022,50(5):9.
[31] 段汀,陈权亮,廖雨静.“21.7”郑州极端暴雨的形成过程及致灾机理分析[J].气象科学,2022(2):42.
[32] 赵宇,李媛,赵光平.引发暴雨天气的中尺度低涡的数值研究[J].大气科学学报,2013,36(6):13.
[33] 冉令坤,李舒文,周玉淑,等. 2021年河南“7.20”极端暴雨动,热力和水汽特征观测分析[J].大气科学,2021,45(6):18.
[34] 张一平,王新敏,梁俊平,等.黄淮地区两次低涡暴雨的中尺度特征分析[J].暴雨灾害,2013,32(4):303-313.
[35] 赵宇,崔晓鹏,高守亭.引发华北特大暴雨过程的中尺度对流系统结构特征研究[J].大气科学,2011(5):157-174.
[36] 孙继松.气流的垂直分布对地形雨落区的影响[J].高原气象,2005,24(1):62-69.
备注/Memo
收稿日期:2023-03-15
基金项目:国家自然科学基金资助项目(52239006、41930972、41975001)
通信作者:谌芸.E-mail:chenyun@cma.gov.cn