WANG Xiaoya,REN Rui,WEN Chengyu.Ground Traffic Sign Detection Algorithm based on Color Space Combination[J].Journal of Chengdu University of Information Technology,2024,39(06):702-711.[doi:10.16836/j.cnki.jcuit.2024.06.009]
基于颜色空间结合的地面交通标志检测算法
- Title:
- Ground Traffic Sign Detection Algorithm based on Color Space Combination
- 文章编号:
- 2096-1618(2024)06-0702-10
- Keywords:
- edge detection; color space; traffic signs; HSL; Lab
- 分类号:
- TP391.9
- 文献标志码:
- A
- 摘要:
- 针对传统的检测算法存在过度引入噪声,以及错误地进行边缘定位而导致误检、漏检等现象,提出一种基于HSL和Lab颜色空间结合的地面交通标志检测算法。区别于传统的检测算法利用物体的物理特征对物体进行边缘响应而达到检测目的,该算法高度依赖物体的颜色特征,对带有鲜明颜色特征的物体的检测效果较优。观察发现,路面上的交通标志,车道线、斑马线等往往都是明亮的白色和黄色,因此,该算法可以更好地应用于实际交通场景下的地面交通标志。实验结果表明,该算法针对普通场景和复杂场景下的地面交通标志检测的效果均优于传统检测算法,对噪声的抗干扰能力以及对真实边缘的定位能力更强。
- Abstract:
- A ground traffic sign detection algorithm based on the combination of HSL and Lab color space is proposed to address the excessive introduction of noise in traditional detection algorithms and the occurrence of false or missed detection caused by incorrect edge positioning. Unlike traditional detection algorithms that utilize the physical features of objects in images to perform edge response on objects for detection purposes, this algorithm highly relies on the color features of objects and has excellent detection performance for objects with distinct color features. Observation shows that traffic signs on the road, such as lane markings and zebra crossings, are often bright white and yellow. Therefore, this algorithm can be well applied to ground traffic signs in actual traffic scenarios. The experimental results show that the algorithm performs better than traditional detection algorithms for ground traffic sign detection in both ordinary and complex scenes, with stronger anti-interference ability to noise and positioning ability to real edges.
参考文献/References:
[1] 王棚飞,刘宏哲,袁家政,等.一种基于图像匹配的地面交通标志实时识别方法[J].计算机科学,2014,41(6):317-323.
[2] 罗文婷,李中轶,李林,等.基于改进Canny算法的道路标线自动识别及定位[J].西南交通大学学报,2018,53(6):1253-1260.
[3] 于新善,孟祥印,金腾飞,等.基于改进Canny算法的物体边缘检测方法[J].激光与光电子学进展:2023,60(22):1-19.
[4] 郑欢欢,冯治东,李瑞华.基于sobel算子的道路图像边缘检测算法[J].榆林学院学报,2023,33(2):60-63.
[5] 文永革,何红洲,李海洋.一种改进的Roberts和灰色关联分析的边缘检测算法[J].图学学报,2014,35(4):637-642.
[6] GARG A,PAN X W,DUNG L R.LiCENt:Low-light image enhancement using the light channel of HSL[J].IEEE Access,2022,10:33547-33560.
[7] LU G,PENG L,ZHANG L,et al.Two-step pedestrian searching method based on Lab color space; proceedings of the 2015[C].IEEE 10th Conference on Industrial Electronics and Applications(ICIEA),2015.
[8] ZHANG Y,DONG Z,ZHANG K,et al.Illumination variation-resistant video-based heart rate monitoring using LAB color space[J].Optics and Lasers in Engineering,2021,136:106328.
[9] ZHANG F,WU X,GU C.Detection of Road Surface Identifiers Based on Deep Learning[C].proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing(AIAM),2019.
[10] ZHU Z,LIANG D,ZHANG S,et al.Traffic-Sign Detection and Classification in the Wild[C].proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016.
[11] YANG W,ZHANG W.Real-time Traffic Signs Detection Based on YOLO Network Model[C].proceedings of the 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CyberC),2020.
[12] TIAN J,YUAN J,LIU H.Road Marking Detection Based on Mask R-CNN Instance Segmentation Model[C].proceedings of the 2020 International Conference on Computer Vision,Image and Deep Learning(CVIDL),2020.
[13] SARAVANAN G,YAMUNA G,NANDHINI S.Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models[C].proceedings of the 2016 International Conference on Communication and Signal Processing(ICCSP),2016.
[14] MA Y,HAVYARIMANA V,BAI J,et al.Vision-Based Lane Detection and Lane-Marking Model Inference:A Three-Step Deep Learning Approach[C].proceedings of the 2018 9th International Symposium on Parallel Architectures,Algorithms and Programming(PAAP),2018.
[15] JONG-MIN P,HYUN-CHUL C,SE-YOUNG O.Comparison of Color Spaces in Fitting Robustness of Active Appearance Model[C].2009 International Conference on Control,Automation and Systems(ICCAS 2009),2009.
[16] JAYASINGHE O,HEMACHANDRA S,ANHETTIGAMA D,et al.CeyMo:See More on Roads -A Novel Benchmark Dataset for Road Marking Detection[C].proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV),2022
[17] BASAK J K,MADHAVI B G,PAUDEL B,et al.Prediction of Total Soluble Solids and pH of Strawberry Fruits Using RGB,HSV and HSL Colour Spaces and Machine Learning Models[J/OL] 2022,11(14):10.3390/foods11142086.
相似文献/References:
[1]陈 留,杨笔锋,谢 欢,等.基于纹理和SVM的地面凝结现象观测方法研究[J].成都信息工程大学学报,2022,37(06):622.[doi:10.16836/j.cnki.jcuit.2022.06.002]
CHEN Liu,YANG Bifeng,XIE Huan,et al.A Texture-based SVM Observation of Ground Condensation Phenomenon[J].Journal of Chengdu University of Information Technology,2022,37(06):622.[doi:10.16836/j.cnki.jcuit.2022.06.002]
备注/Memo
收稿日期:2023-02-22
基金项目:四川省科技计划资助项目(2023YFS0422)