JIANG Ye,LIU Yanxia,WEN Jun,et al.Vertical Structure and Microphysical Characteristics of Clouds and Precipitation Induced by a Typical Southwest Vortex[J].Journal of Chengdu University of Information Technology,2024,39(06):718-726.[doi:10.16836/j.cnki.jcuit.2024.06.011]
一次典型西南涡降水的垂直结构和微物理特征研究
- Title:
- Vertical Structure and Microphysical Characteristics of Clouds and Precipitation Induced by a Typical Southwest Vortex
- 文章编号:
- 2096-1618(2024)06-0718-09
- Keywords:
- the Southwest vortex; GPM satellite; precipitation vertical structure; precipitation micro-properties
- 分类号:
- P412.27
- 文献标志码:
- A
- 摘要:
- 为进一步认识西南涡降水的影响,利用2020年8月11日全球降水测量卫星(GPM)星载双频雷达(DPR)探测资料,结合欧洲中期天气预报中心ERA5再分析资料、地面自动站资料和FY-2G卫星资料,对一次典型西南涡降水的垂直结构和微物理特征进行研究。结果表明:此次过程由高原涡诱生出西南涡导致,盆地西部整体位于槽前正涡度区域,受偏南暖湿气流的控制。此次西南涡降水表现为混合性降水,即片状的层云降水中混入块状的对流降水。雷达测量的雨顶高度与降水的大值区相对应,反应出上升对流强烈。雷达的观测结果表明,两类降水的垂直结构和微物理过程有显著差异。对于层云降水,其垂直尺度较大,其回波强度、数浓度、粒径及降水强度整体随高度下降而增大,雨滴谱分布更集中,以浓度略低的中小雨滴为主。冻结层以上,凝华、碰并等效率较低且缓慢; 冻结层以下,以碰并过程为主。而对流降水的垂直尺度更大,粒径大且浓度高,导致回波强度和降水强度较大,以浓度较高的中大雨滴为主。冻结层以上,有快速的冰晶增长及活跃的冰相过程; 冻结层以下,以碰并和破碎为主,效率强于层云降水。
- Abstract:
- To further understand the influence of southwest vortex precipitation, the Global Precipitation Measurement Satellite(GPM)spaceborne dual-frequency radar(DPR)detection data from August 11, 2020, combined with the ECMWF ERA5 reanalysis data, ground automatic station data, and FY-2G satellite data, The vertical structure and microphysical characteristics of typical southwest vortex precipitation are studied. This process is caused by the southwest vortex induced by the plateau vortex, and the western part of the basin is located in the positive vorticity area in front of the trough, which is controlled by the southerly warm and wet air. The Southwest Vortex precipitation showed mixed precipitation, that is, flaky stratus precipitation mixed with massive convective precipitation. The height of the rain-top measured by the radar corresponds to the large value area of the precipitation, which reflects the strong upward convection. The radar observation results show that the vertical structure and microphysical processes of the two types of precipitation are significantly different. For stratiform precipitation, the vertical scale is large, and its echo intensity, raindrop concentration, diameters, and precipitation intensity increase with the decrease in height. The raindrop spectrum distribution is more concentrated, mainly small and medium-sized raindrops with slightly lower concentration. Above the freezing layer, the efficiency of condensation and collision-coalescence is low and slow. Below the freezing layer, the collision-coalescence is the main process. For convective precipitation, the vertical scale, raindrop diameters and concentration are larger, leading to larger echo intensity and precipitation intensity, mainly large raindrops with higher concentration. Above the frozen layer, there is rapid ice crystal growth and an active ice phase process. Below the frozen layer, collision-coalescence and shattering are the main, and the efficiency is stronger than stratiform precipitation.
参考文献/References:
[1] 卢敬华.西南低涡概论[M].北京:气象出版社,1986:63-64.
[2] 陈忠明,徐茂良,闫文彬,等.1998年夏季西南低涡活动与长江上游暴雨[J].高原气象,2003,22(2):163-167.
[3] 李国平.高原涡、西南涡研究的新进展及有关科学问题[J].沙漠与绿洲气象,2013:7(3).
[4] 李跃清,徐祥德.西南涡研究和观测试验回顾及进展[J].气象科技进展,2016,6(3):134-140.
[5] 李跃清.西南涡涡源研究的有关新进展[J].高原气象,2021,40(6):1394-1406.
[6] 李国平.青藏高原动力气象学[M].北京:气象出版社,2021:89.
[7] 陶诗言.中国之暴雨[M].北京:科学出版社,1980:225.
[8] 李国平,刘行军.西南低涡暴雨的湿位涡诊断分析[J].应用气象学报,1994,5(3):354-360.
[9] 陶诗言,陈联寿,徐祥德.第二次青藏高原大气科学试验理论研究进展(一)[M].北京:气象出版社,1999:309-320.
[10] 何光碧,陈静,李川,等.低涡与急流对“04.9”川东暴雨影响的分析与数值模拟[J].高原气象,2005,24(6):1012-1023.
[11] 王晓芳,廖移山,闵爱荣,等.影响“05.06.25”长江流域暴雨的西南低涡特征[J].高原气象,2007,6(1):197-205.
[12] 李跃清,赵兴炳,邓波.2010年夏季西南涡加密观测科学试验[J].高原山地气象研究,2010,30(4):80-84.
[13] 马红,郑翔飚,胡勇,等.一次西南涡引发MCC暴雨的卫星云图和多普勒雷达特征分析[J].大气科学学报,2010,33(6):688-696.
[14] 陶廷森,黄葵,陆飞,等.2011年苏南一次梅雨期大暴雨天气过程分析[C].江苏省气象学会第七届学术交流会.苏州:江苏省气象学会,2011:18.
[15] 杜倩,覃丹宇,张鹏.利用 FY-2卫星观测对一次西南低涡暴雨过程的分析研究[C].第30届中国气象学会年会-S4卫星资料在中小尺度天气分析中的应用.南京:中国气象学会,2013:44-56.
[16] 虎莹.一次西南涡暴雨的云图和雷达特征分析[J].现代农业科技,2016(2):261-265.
[17] 李佳颖,翟丽萍,覃月凤,等.广西一次大范围西南涡暴雨过程多尺度特征分析[J].气象研究与应用,2018,39(3):7-10.
[18] 杨亦典,白爱娟,彭菊蓉.西南涡影响下汉中盆地一次暴雨过程MCC雷达特征[J].气象科技,2018,46(3):575-583.
[19] 邓承之,赵宇,牟容,等.一次西南涡特大暴雨过程中MCS的演变特征[J].气象科技,2018,46(1):121-128.
[20] 何跃,李强,刘伯骏,等.四川盆地一次西南涡作用下大暴雨过程的短时强降水分析[J].沙漠与绿洲气象,2019,13(6):29-38.
[21] 周淼,刘黎平,王红艳.一次高原涡和西南涡作用下强降水的回波结构和演变分析[J].气象学报,2014,72(3):554-569.
[22] 蒋璐君,李国平,王兴涛.基于TRMM资料的高原涡与西南涡引发强降水的对比研究[J].大气科学,2015,39(2):249-259.
[23] Wu Z,Huang Y,Zhang Y,et al.Precipitation characteristics of typhoon Lekima(2019)at landfall revealed by joint observations from GPM satellite and S-band radar[J].Atmospheric Research,2021,260:105714.
[24] Xu D,Shen F,Min J,et al.Assimilation of GPM Microwave Imager radiance for track prediction of typhoon cases with the WRF hybrid En3DVAR system[J].Advances in Atmospheric Sciences,2021,38:983-993.
[25] 张奡祺,傅云飞.GPM卫星双频测雨雷达探测降水结构的个例特征分析[J].大气科学,2018,42(1):33-51.
[26] 方勉,何君涛,符永铭,等.基于GPM卫星降水产品对1808号超强台风“玛利亚”降水结构的分析[J].大气科学学报,2019,42(6):845-854.
[27] 覃丹宇,黄勇,李博,等.梅雨锋云系的模态研究I:主导模态[J].大气科学,2014,38(4):700-718.
[28] Yuter S E,Kingsmill D E,Nance L B,et al.Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow[J].Journal of Applied Meteorology and Climatology,2006,45(10):1450-1464.
[29] 张静,孙羡.2020年8月10~14日四川盆地一次持续性暴雨过程特征及成因分析[J].高原山地气象研究,2021,41(3):50-57.
[30] 赵玉春,王叶红.高原涡诱生西南涡特大暴雨成因的个例研究[J].高原气象,2010,29(4):819-831.
[31] 杜爽,王东海,李国平,等.基于双频星载降水雷达GPM数据的华南地区降水垂直结构特征分析[J].热带气象学报,2020,36(1):115-130.
[32] 李剑婕,郑佳锋,刘艳霞,等.四川盆地与周边地区的降水垂直结构和宏微观差异研究[J].气象学报,2022,80(2):205-223.
[33] 蒲学敏.高原涡和西南涡作用下的四川盆地强降水成因和云系特征分析[D].成都:成都信息工程大学,2020.
[34] Bringi V,Chandrasekar V,Hubbert J,et al.Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis[J].American Meteorological Society,2003,60:354-365.
[35] Wang Gaili,Zhou Renran,Zhaxi Suolang,et al.Raindrop size distribution measurements on the Southeast Tibetan Plateau during the STEP project[J].Atmospheric Research,2021,249:105311.
[36] Ji L,Chen H,Li L,et al.Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing,Northern China[J].Remote Sensing,2019,11(12):1479.
[37] Zhang T,Wei W,Zheng L,et al.Characteristics and Variations of Raindrop Size Distribution in Chengdu of the Western Sichuan Basin,China[J].Atmosphere,2022,14(1):76.
[38] Fulton R A,Breidenbach J P,Seo D J,et al.The WSR-88D rainfall algorithm[J].Weather and forecasting,1998,13(2):377-395.
[39] Marshall J S,Palmer W M K.The distribution of raindrops with size[J].American Meteorological Society,1948,5:165-166.
[40] Rosenfeld D,Wolff D B,Atlas D.General probability-matched relations between radar reflectivity and rain rate[J].American Meteorological Society,1993,32:50-72.
[41] Das S,Talukdar S,Bhattacharya A,et al.Vertical profile of ZR relationship and its seasonal variation at a tropical location[C].2011 IEEE Applied Electromagnetics Conference(AEMC).Institute of Electrical and Electronics Engineers,2011:1-4.
[42] Atlas D,Ulbrich C W,Marks Jr F D,et al.Systematic variation of drop size and radar‐rainfall relations[J].Journal of Geophysical Research:Atmospheres,1999,104(D6):6155-6169.
[43] 冯雷,陈宝君.利用PMS的GBPP-100型雨滴谱仪观测资料确定Z-R关系[J].气象科学,2009,29(2):192-198.
[44] Maki M,Keenan T D,Sasaki Y,et al.Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin,Australia[J].Journal of Applied Meteorology and Climatology,2001,40(8):1393-1412.
备注/Memo
收稿日期:2023-07-04
基金项目:国家自然科学基金资助项目(42205008)
通信作者:刘艳霞.E-mail:liuyx@cuit.edu.cn