PDF下载 分享
[1]任 锐,王晓娅,文成玉.基于CRNN改进的中文街景文本识别技术[J].成都信息工程大学学报,2025,40(01):1-6.[doi:10.16836/j.cnki.jcuit.2025.01.001]
 REN Rui,WANG Xiaoya,WEN Chengyu.Improved Chinese Street View Text Recognition Technology based on CRNN[J].Journal of Chengdu University of Information Technology,2025,40(01):1-6.[doi:10.16836/j.cnki.jcuit.2025.01.001]
点击复制

基于CRNN改进的中文街景文本识别技术

参考文献/References:

[1] Mishra A,Alahari K,Jawahar C.Top-down and bottom-up cues for scene text recognition[C].Top-down and bottom-up cues for scene text recognition.2012 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:2687-2694.
[2] Shi B,Xiang B,Cong Y.An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition[J].Proceedings of IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,39(11):2298-2304.
[3] Trinh Tan Dat,Le Tran Anh Dang,Nguyen Nhat Truong.An improved CRNN for Vietnamese Identity Card Information Recognition[J].COMPUTER SYSTEMS SCIENCE AND ENGINEERING.2022,40(2):539-555.
[4] 闫郁瑾.基于CRNN的自然场景文字识别算法研究[D].西安:西安电子科技大学,2020.
[5] 丁宇.基于深度学习的自然场景文字识别研究[D].青岛:山东科技大学,2020.
[6] Christian Szegedy,Wei Liu,Yangqing Jia.Going deeper with convolutions[C].2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2015:7-12.
[7] He Kaiming,Zhang Xiangyu,Ren.Shaoqing Deep Residual Learning for Image Recognition[C].CoRR.Volume.abs,2015:45-49.
[8] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C].Advances in neural information processing systems,2017:30-30.
[9] 薛晨兴,张军,邢家源.基于GoogLeNet Inception V3的迁移学习研究[J].无线电工程,2020,50(2):118-122.
[10] Szegedy C,Ioffe S,Vanhoucke V,et al.Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning[C].Proceedings of 31stAAAI Conference on Ar-tificial Intelligence,AAAI,2017:4278-4284.
[11] Hassan Ehtesham,Lekshmi V L.Attention Guided Feature Encoding for Scene Text Recognition[J].Journal of Imaging,2022,8(10):276-276.
[12] Kantipudi MVV Prasad,Kumar Sandeep,Kumar Jha Ashish.Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network[J].Computational Intelligence and Neuroscience,2021,11(5):13-15.
[13] 陈鹏,李鸣,张宇,等.一种端到端的自然场景文本检测与识别模型[J].测控技术,2022,41(7):17-22.
[14] Yousef Mohamed,Bishop Tom E.OrigamiNet:Weakly-supervised,segmentation-free,one-step,full page text recognition by learning to unfold[C].IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:14710-14719.
[15] Zuo Lingqun,Sun Hongmei,Mao Qichao.Natural Scene Text Recognition Based on Encoder-Decoder Framework[J].IEEEAccess,2019,7:62616-62623.
[16] 吴启明,宋雨桐.基于YOLOv3与CRNN的自然场景文本识别[J].计算机工程与设计,2022,43(8):2352-2360.
[17] 熊炜,孙鹏,强观臣.基于注意力机制的自然场景图像中文本识别方法及系统[P].中国专利,202310120821.8,2023-2-13.
[18] Xin Tang,Yongquan Lai,Ying Liu.Visual-Semantic Transformer for Scene Text Recognition[J].arXiv preprint arXiv,2021,12(8):56-61.

相似文献/References:

[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(01):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(01):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]黄 洁,王 燚.适用于侧信道分析的卷积神经网络结构的实验研究[J].成都信息工程大学学报,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
 HUANG Jie,WANG Yi.Experimental Study on the Structure of Convolutional Neural Network Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019,(01):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
[5]王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(03):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
 WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(01):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
[6]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(01):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[7]唐康健,文 展,李文藻.基于卷积神经网络的垃圾图像分类模型研究应用[J].成都信息工程大学学报,2021,36(04):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
 TANG Kangjian,WEN Zhan,LI Wenzao.Research and Application of Garbage Image Classification Model based on Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2021,36(01):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
[8]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(01):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
[9]蒲建飞,魏 维,吴帝勇,等.基于烟雾区域和轻量化模型的视频烟雾检测[J].成都信息工程大学学报,2023,38(03):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
 PU Jianfei,WEI Wei,WU Diyong,et al.Video Smoke Detection based on Smoke Area and Lightweight Model[J].Journal of Chengdu University of Information Technology,2023,38(01):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
[10]詹鸿辉,程仲汉.基于卷积神经网络的异常流量鉴别方法[J].成都信息工程大学学报,2023,38(06):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]
 ZHAN Honghui,CHENG Zhonghan.Identification Method of Abnormal Traffic based on Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2023,38(01):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]

备注/Memo

收稿日期:2023-09-04
基金项目:四川省科技计划资助项目(2023YFS0422)

更新日期/Last Update: 2025-02-28