PDF下载 分享
[1]白凯毅,盛志伟,黄源源.基于惩罚回归的高噪声流量分类[J].成都信息工程大学学报,2025,40(02):125-131.[doi:10.16836/j.cnki.jcuit.2025.02.001]
 BAI Kaiyi,SHENG Zhiwei,HUANG Yuanyuan.High Noise Traffic Classification based on Penalty Regression[J].Journal of Chengdu University of Information Technology,2025,40(02):125-131.[doi:10.16836/j.cnki.jcuit.2025.02.001]
点击复制

基于惩罚回归的高噪声流量分类

参考文献/References:

[1] Azab A,Khasawneh M,Alrabaee S,et al.Network traffic classification:Techniques,datasets,and challenges[J].Digital Communications and Networks,2024,10(3):676-692.
[2] Guerra J L,Catania C,Veas E.Datasets are not enough:Challenges in labeling network traffic[J].Computers & Security,2022,120:102810.
[3] Song H,Kim M,Park D,et al.Learning from noisy labels with deep neural networks:A survey[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(11):8135-8153.
[4] Nigam N,Dutta T,Gupta H P.Impact of noisy labels in learning techniques:a survey[C].Advances in Data and Information Sciences:Proceedings of ICDIS 2019.Springer Singapore,2020:403-411.
[5] Hwang R H,Peng M C,Nguyen V L,et al.An LSTM-based deep learning approach for classifying malicious traffic at the packet level[J].Applied Sciences,2019,9(16):3414.
[6] Chen J,Lv T,Cai S,et al.A novel detection model for abnormal network traffic based on bidirectional temporal convolutional network[J].Information and Software Technology,2023,157:107166.
[7] Yuan Q,Liu C,Yu W,et al.BoAu:Malicious traffic detection with noise labels based on boundary augmentation[J].Computers & Security,2023,131:103300.
[8] Northcutt C,Jiang L,Chuang I.Confident learning:Estimating uncertainty in dataset labels[J].Journal of Artificial Intelligence Research,2021,70:1373-1411.
[9] Chen P,Liao B B,Chen G,et al.Understanding and utilizing deep neural networks trained with noisy labels[C].International Conference on Machine Learning.PMLR,2019:1062-1070.
[10] Kim T,Ko J,Choi J H,et al.Fine samples for learning with noisy labels[J].Advances in Neural Information Processing Systems,2021,34:24137-24149.
[11] Anderson B,McGrew D.Machine learning for encrypted malware traffic classification:accounting for noisy labels and non-stationarity[C].Proceedings of the 23rd ACM SIGKDD International Conference on knowledge discovery and data mining.2017:1723-1732.
[12] Al-Gethami K M,Al-Akhras M T,Alawairdhi M.Empirical evaluation of noise influence on supervised machine learning algorithms using intrusion detection datasets[J].Security and Communication Networks,2021,2021(1):8836057.
[13] Yuan Q,Zhu Y,Xiong G,et al.ULDC:Unsupervised Learning-Based Data Cleaning for Malicious Traffic With High Noise[J].The Computer Journal,2024,67(3):976-987.
[14] Zhang C,Bengio S,Hardt M,et al.Understanding deep learning(still)requires rethinking generalization[J].Communications of the ACM,2021,64(3):107-115.
[15] Fallah S,Bidgoly A J.Android malware detection using network traffic based on sequential deep learning models[J].Software:Practice and Experience,2022,52(9):1987-2004.
[16] Han B,Yao J,Niu G,et al.Masking:A new perspective of noisy supervision[EB/OL].http://arxiv.org/abs/1805.08193,2018-05-21/2023-06-01.
[17] Lyu Y,Tsang I W.Curriculum loss:Robust learning and generalization against label corruption[J].arXiv preprint arXiv:1905.10045,2019:1-2.
[18] Wang Y,Sun X,Fu Y.Scalable penalized regression for noise detection in learning with noisy labels[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:346-355.
[19] Weisberg S.Applied linear regression[M].John Wiley & Sons,2005:1-3.
[20] Huber P J.Robust statistics[M].John Wiley & Sons,2004:2-4.
[21] Wang W,Zhu M,Zeng X,et al.Malware traffic classification using convolutional neural network for representation learning[C].2017 International conference on information networking(ICOIN).IEEE,2017:712-717.

备注/Memo

收稿日期:2023-09-20
基金项目:国家重点研发计划资助项目(2022YFB3103103); 四川省重点研发计划资助项目(2022YFS0571); 四川网络文化研究中心资助项目(WLWH22-18); 四川省自然科学基金资助项目(2022NSFSC0557)
通信作者:盛志伟.E-mail:7782988@qq.com

更新日期/Last Update: 2025-04-30