GUO Zhaohua,CHEN Yun,XIAO Tiangui,et al.Analysis of a Double Rain Belts Precipitation Process in the Pre-flood Season of South China[J].Journal of Chengdu University of Information Technology,2025,40(02):170-178.[doi:10.16836/j.cnki.jcuit.2025.02.008]
华南前汛期一次双雨带降水过程分析研究
- Title:
- Analysis of a Double Rain Belts Precipitation Process in the Pre-flood Season of South China
- 文章编号:
- 2096-1618(2025)02-0170-09
- Keywords:
- double rain belts in South China; front; cyclonic shear; moisture potential vorticity; convection triggering
- 分类号:
- P458.1+21.1
- 文献标志码:
- A
- 摘要:
- 为加深华南前汛期双雨带形成机理的科学认识,利用国家级和区域自动站逐小时观测资料、阳江和清远探空资料、多普勒天气雷达组网产品、广州双偏振天气雷达基数据及ERA5再分析资料,采用湿位涡诊断等方法,分析2022年5月华南一次双雨带过程的环境条件及形成机制。结果表明:(1)两条雨带均发生在高湿与层结不稳定的中尺度对流环境中,但北雨带为低涡切变线和锋面等天气系统协同强迫形成的大尺度锋面雨带,强降水落区集中,具有一定的对流性质; 南雨带在弱天气尺度强迫背景下产生,对流性质更强,具有极端性。(2)对流不稳定是北雨带发展的重要机制,低层MPV1<0且MPV2>0对应强降水落区,较强的大气斜压性有利于低涡发展。(3)南雨带夜间东南暖湿气流增强,海陆边界和地形抬升促使气流发生侧向摩擦,触发阳江的初始对流,中等偏弱的深层垂直风切变和γ中尺度涡旋有助于对流组织化; 台山-中山在地面气旋式切变和地形抬升下触发初始对流,配合较弱的冷池出流和温度梯度,有助于对流系统的维持。(4)与北雨带相关的水汽输送来源于700 hPa附近,南雨带的水汽输送来源于850~925 hPa。双雨带之间的弱雨区可能与低空西南急流的位置、中层下沉气流以及低层辐散等因素有关。
- Abstract:
- In order to deepen the scientific understanding of the formation mechanism of double rain belts in the pre-flood season of South China, this paper uses the hourly observation data of national and regional automatic stations, sounding data of Yangjiang and Qingyuan, doppler weather radar network products, Guangzhou dual-polarization weather radar data and ERA5 reanalysis data, by method of moisture potential vorticity diagnosis to analyze the environmental conditions and formation mechanism of a double rain belts event in South China in May 2022. The results are as follows.(1)Double rain belts occurred in a mesoscale convective environment with high humidity and unstable stratification. However, the northern rain belt was a large-scale frontal rain belt formed by the synergistic forcing of low vortex, shear line, front and other weather systems. The precipitation area was concentrated and had certain convective properties. The southern rain belt was generated under the background of weak weather scale forcing. The sudden and nocturnal precipitation was obvious, and the convection was stronger and extreme.(2)Convective instability was the important mechanism for development of the northern rain belt. The area of low-level MPV1<0 and MPV2>0 corresponded to the heavy rainfall area in the northern rain belt. Strong atmospheric baroclinicity was conducive to the development of low-level vortex.(3)The warm and humid southeasterly air strengthened at night in the southern rain belt, and the blocking and uplifting of the land-sea boundary and coastal topography promoted the lateral friction of airflow, triggering the initial convection in Yangjiang. Moderately weak deep vertical wind shear and γ mesoscale vortex contributed to the maintenance of convective organization. The initial convection triggered under the action of surface cyclonic shear and topographic uplift between Taishan and Zhongshan, which was conducive to the maintenance of convective system and precipitation with weak cold pool outflow and temperature gradient.(4)The water vapor transport associated with the northern rain belt came from the vicinity of 700 hPa, and the water vapor transport in the southern rain belt came from 850-925 hPa.The weak precipitation area between the double rain belts may be related to the location of the low-level southwest jet, the middle-level downdraft and the low-level divergence.
参考文献/References:
[1] 林确略,赵华生,林宝亭.双雨带过程中的回流暖区暴雨个例对比研究[J].热带气象学报,2020,36(6):721-733.
[2] 陈涛,陈博宇,于超,等.华南前汛期锋面对流系统和暖区对流系统的多尺度特征和集合预报敏感性对比分析[J].气象,2020,46(9):1129-1142.
[3] 覃武,刘国忠,赖珍权,等.华南暖区暴雨预报失误及可预报性探讨[J].气象,2020,46(8):1039-1052.
[4] Luo Y L,Zhang R H,Wan Q L,et al.The southern China Monsoon Rainfall Experiment(SCMREX)[J].Bulletin of the American Meteorological Society,2017,98(5):999-1013.
[5] Wu M W,Luo Y L.Mesoscale observational analysis of lifting mechanism of a warm sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015[J].Journal of Meteorological Research,2016,30(5):719-736.
[6] 吴乃庚,温之平,邓文剑,等.华南前汛期暖区暴雨研究新进展[J].气象科学,2020,40(5):605-616.
[7] 谌芸,陈涛,汪玲瑶,等.中国暖区暴雨的研究进展[J].暴雨灾害,2019,38(5):483-493.
[8] Zhao Y C,Li Z C,Xiao Z N.A Diagnostic and Numerical Study on a Rainstorm in South China Induced by a Northward Propagating Tropical System[J].Acta Meteorological Sinica,2008,22(3):284-302.
[9] 张立凤,查石祥,张铭.一次华南暴雨过程的数值模拟和试验[J].气象科学,2000,20(2):120-128.
[10] 王鹏云,肖乾广,林永辉,等.卫星遥感地表植被及其在华南暴雨中尺度数值模拟中的应用试验[J].应用气象学报,2001,12(3):285-296.
[11] 蒲义良,卢栩诗,胡胜,等.华南沿海一次暖区特大暴雨的对流特征和发展机制分析[J].气象,2023,49(2):201-212.
[12] Wang H,Luo Y L,Jou B J D.Initiation,maintenance,and properties of convection in an extreme rainfall event during SCMREX:Observational analysis[J].J.Geophys.Res.Atmos.,2014,119(23):13206-13232.
[13] Liu X,Luo Y L,Guan Z,et al.An Extreme Rainfall Event in Coastal South China During SCMREX-2014:Formation and Roles of Rainband and Echo Trainings[J].Journal of Geophysical Research:Atmospheres,2018,123(17).
[14] 罗娟,冯家兄,陈沐希.中尺度对流系统内β尺度双雨带不稳定机制及锋生对比分析[J].干旱气象,2018,36(3):456-464.
[15] 赵玉春,李泽椿,肖子牛.华南锋面与暖区暴雨个例对比分析[J].气象科技,2008,36(1):47-54.
[16] 张晓惠,倪允琪.华南前汛期锋面对流系统与暖区对流系统的个例分析与对比研究[J].气象学报,2009,67(1):108-121.
[17] 林晓霞,冯业荣,张诚忠,等.华南一次暴雨过程热力和动力特征的诊断分析[J].热带气象学报,2017,33(6):975-984.
[18] 李英,陈联寿,雷小途.Winnie(1997)和 Bilis(2000)变性过程的湿位涡分析[J].热带气象学报,2005,21(2):142-152.
[19] 赖绍钧,何芬,赵汝汀,等.“龙王”(Longwang)台风过程湿位涡的诊断分析[J].气象科学,2007,27(3):266-271.
[20] 丁治英,王爽,高松.一次华南双雨带暴雨中的位涡演变与雨带间的相互作用[J].大气科学学报,2017,40(5):653-662.
[21] 贺哲,竹磊磊,张霞,等.河南省秋季连续两个暴雨日的锋生和不稳定诊断分析[J].气象,2022,48(9):1101-1115.
[22] 张入财,田金华,陈超辉,等.郑州“7·20”特大暴雨极端性成因分析[J].气象与环境科学,2022,45(2),52-64.
[23] 刘学华,朱宵峰,梁亮.Q矢量和湿位涡在梅雨期区域性暴雨中的诊断分析[J].气象与环境学报,2013,29(4):11-17.
[24] 俞小鼎.短时强降水临近预报的思路与方法[J].暴雨灾害,2013,32(3):202-209.
[25] Westra S,Fowler H J,Evans J P,et al.Future changes to the intensity and frequency of short-duration extreme rainfall[J].Rev.Geophys.,2014,52(3):522-555.
[26] 陈元昭,俞小鼎,陈训来.珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J].气象,2016,42(2):144-155.
[27] Weisman M L,Klemp J B.The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J].Monthly Weather Reviews,1982,110(6):504-520.
[28] Weisman M L,Klemp J B.The structure and classification of numerically simulated convective storms in directionally varying wind shears[J].Monthly Weather Reviews,1984,112(112):2479-2498.
[29] Weisman M L.The role of convectively generated rear-inflow jets in the evolution of long-lived meso-convective systems[J].Journal of the Atmospheric Sciences,1992,49(19):1826-1847.
[30] Grim J A,Rauber R M,Mcfarquhar G M,et al.Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX[J].Monthly Weather Review,2009,137(4):1206-1229.
[31] Wolf P L.WSR-88D radar depiction of supercell-bow echo interaction:Unexpected evolution of a large,tornadic,“comma-shaped” supercell over eastern Oklahoma[J].Weather and Forecasting,1998,13(2):492-504.
[32] Lapenta K D,Bosart L F,Galarneau T J,et al.A multiscale examination of the 31 May 1998 Mechanicville,NewYork,Tornado[J].Weather and Forecasting,2005,20(4):494-516.
[33] French A J,Parker M D.Observations of mergers between squall lines and isolated supercell thunderstorms[J].Weather and Forecasting,2012,27(2):255-278.
备注/Memo
收稿日期:2023-10-10
基金项目:国家自然科学基金资助项目(42475015、41975001、52239006)
通信作者:谌芸.E-mail:chenyun@cma.gov.cn