HUANG Yue,YANG Yang,MA Pan,et al.Relationship between Influenza Outbreak Epidemic and Atmospheric Particle Concentration in the Cold Season of Shenzhen[J].Journal of Chengdu University of Information Technology,2025,40(02):232-237.[doi:10.16836/j.cnki.jcuit.2025.02.015]
深圳市冷季流感暴发与大气颗粒物浓度关系探究
- Title:
- Relationship between Influenza Outbreak Epidemic and Atmospheric Particle Concentration in the Cold Season of Shenzhen
- 文章编号:
- 2096-1618(2025)02-0232-06
- Keywords:
- influenza outbreak epidemic; atmospheric particulate matter; exposure-response relationship; time-series model; cold season
- 分类号:
- P49
- 文献标志码:
- A
- 摘要:
- 为探究亚热带气候区冷季流感暴发风险与大气颗粒物浓度的关系,为相关疾病的防治提供科学依据,进一步丰富气象健康与交叉领域的研究,收集深圳市2013年5月至2015年12月流感暴发的疫情逐日监测数据,及同时段的常规气象观测数据与大气颗粒物浓度数据。在区分流感病毒亚型(甲流、乙流)的基础上,采用分布-滞后非线性模型DLNM,分析冷季流感暴发与两种粒径颗粒物PM10、PM2.5的关联性。结果显示:两种亚型的暴发均在冷季呈现高峰,与颗粒物在冷季的高浓度峰值基本对应; 但甲流、乙流疫情暴发的时间段不完全重合,并存在年际差异。DLNM 揭示,对于甲流而言,高浓度PM2.5存在较强的滞后性影响,滞后11 d时74.28 μg/m3(P90)的PM2.5浓度关联的相对危险度RR可达1.85(95%CI:1.01~3.36); 而PM10的即时效应更强,暴发当天高浓度(90.50 μg/m3,P75)关联的RR高达1.68(95%CI:1.04~2.71)。此外,大气颗粒物对乙流暴发仅存在一定的滞后效应(5~8 d),例如,滞后5 d浓度为56.58 μg/m3(P75)的PM2.5危险度为1.22(95%CI:0.90~1.64),而90.50 μg/m3(P75)的PM10危险度高达3.17(95%CI:1.73~5.78)。综上,大气颗粒物对流感暴发疫情的影响显著,提升空气质量可一定程度降低流感传播风险。
- Abstract:
- The current study explored the relationship between influenza outbreak risk and concentration of airborne particulate matter in the cold season of Shenzhen, a sub-tropical city in China, which could enrich the study in the interdisciplinary field of meteorology and health, and improve the efficiency of the influenza prevention. Our study collected the daily surveillance data of influenza outbreak in Shenzhen from May 2013 to December 2015, as well as the daily meteorological observation data and daily concentration of atmospheric particulates(PM10 and PM2.5). Based on differentiating two subtypes of influenza virus(influenza-A and influenza-B), we analyzed the association between influenza outbreaks and the two kinds of particulate matter in the cold season of Shenzhen. The Distributed-Lag Nonlinear Model(DLNM)was adopted. The results showed that, the peaks of influenza subtypes generally occurred simultaneously with the high concentrations of particulate matter in the cold season. However, the outbreaks of influenza-A and influenza-B epidemics did not coincide completely, some inter-annual differences existed as well. The DLNM revealed that high PM2.5 concentration had significant effects on influenza-A, e.g., the relative risk(RR)corresponding to a 74.28 μg/m3 of PM2.5(the 90th percentile)on lag 11 d was 1.85(95%CI:1.01-3.36). In contrast, the immediate effect of PM10 on influenza-A was stronger, with an RR of 1.68(95%CI:1.04-2.71)associated with a high concentration(90.50 μg/m3)on the day of the influenza outbreak. However, the immediate effect of particulate matters on influenza B was not significant, they only presented some short-term lag effects on lag 5-8 d. A more prominent impact of PM10 than PM2.5 was revealed. For example, concerning PM2.5, the RR was 1.22(95%CI:0.90-1.64)for a concentration of 56.58 μg/m3(the 75th percentile)on lag 5 d, whereas for PM10 the RR was up to 3.17(95%CI:1.73-5.78)(90.50 μg/m3,the 75th percentile). In summary, the ambient influence of atmospheric particulate matter on the influenza outbreak was significant in Shenzhen, China. Improving air quality could reduce influenza transmission risk to some extent.
参考文献/References:
[1] World Health Organization.Fact sheet on influenza(seasonal).[EB/OL].http://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal),2023,1,12.
[2] Iuliano,A.Estimates of global seasonal influenza-associated respiratory mortality:a modelling study[J].LANCET,2018,391(10127):1285-1300.
[3] 冯录召,彭质斌,王大燕,等.中国流感疫苗预防接种技术指南(2018-2019)[J].中华预防医学杂志,2018,52(11):1101-1114.
[4] Li Yapeng.Impact of weather factors on influenza hospitalization across different age groups in subtropical Hong Kong[J].International Journal Of Biometeorology,2018,62(9):1615-1624.
[5] Lowen AC,Mubareka S,Steel J,et al.Influenza virus transmission is dependent on relative humidity and temperature[J].PLoS Pathog,2007,3:1470-1476.
[6] 马盼,王馨梓,张莉,等.深圳流感发病的气象诱因及预测建模研究[J].气象学报,2022,80(3):421-432.
[7] 钱旭君,沈月平,贺天锋,等.宁波市大气颗粒物与人群因心脑血管疾病死亡的时间序列研究[J].中华流行病学杂志,2016,37(6):841-845.
[8] Fiordelisi A,Piscitelli P,Trimarco B,et al.The mechanisms of air pollution and particulate matter in cardiovascular diseases[J].Heart Fail Rev,2017,22(3):337-347.
[9] Ma Pan.Stronger susceptibilities to air pollutants of influenza A than B were identified in subtropical Shenzhen,China[J].Environmental Research,2023,219:115100.
[10] Kim Ki-Hyun.A review on the human health impact of airborne particulate matter[J].Environment International,2015,74:136-143.
[11] Lu Bing.Epidemiological and genetic characteristics of influenza virus and the effects of air pollution on laboratory-confirmed influenza cases in Hulunbuir,China,from 2010 to 2019[J].Epidemiology And Infection,2020,148:e159.
[12] Chen Gongbo.The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China:A multi-city study[J].Environment International,2017,98(1):82-88.
[13] Cowling,Benjamin.Aerosol transmission is an important mode of influenza A virus spread[J].Nature Communications,2013,4(6):1935.
[14] 深圳市统计局.深圳市年末常住人口数据发布[EB/OL].(http://tjj.sz.gov.cn/ztzl/zt/sjfb/),2012/2022.
[15] 深圳市气象局.深圳市气候概况及四季特征[EB/OL].(http://weather.sz.gov.cn),2022,3,31.
[16] Murtas,Rossella.Effects of pollution,low temperature and influenza syndrome on the excess mortality risk in winter 2016-2017[J].BMC PUBLIC HEALTH,2019,19(1):1-9.
[17] Gasparrini,Antonio.Distributed Lag Linear and Non-Linear Models in R:The Package dlnm[J].Journal Of Statistical Software,2011,43(8):1-20.
[18] 谷少华,王爱红,边国林,等.宁波市气象条件与中暑的关联性分析[J].中华流行病学杂志,2016,37(8):1131-1136.
[19] 山义昌,徐太安,鲁丹,等.流感流行期大气环境特征及流感分级预报[J].气象科技,2003,31(6):389-392.
[20] 何凡,林君芬,徐旭卿.甲型H1N1流感与气象因子的关系及预报模型研究[J].浙江预防医学,2014,26(7):649-652.
[21] 杨斯棋,邢潇月,董卫华,等.北京市甲型H1N1流感对气象因子的时空响应[J].地理学报,2018,73(3):460-473.
[22] 黄智峰,刘晓剑,杨连朋,等.深圳市流行性感冒与气象因素的关联性分析[J].中华疾病控制杂志,2017,21(10):1035-1038.
[23] 陈诹,王远萍,刘丹,等.上海市浦东新区流感样病例与大气颗粒物相关性分析[J].公共卫生与预防医学,2022,33(5):32-35.
[24] 王思嘉,廖青,易波,等.宁波市大气颗粒物浓度与流感样病例的时间序列研究[J].中华疾病控制杂志,2018,22(5):450-454.
备注/Memo
收稿日期:2023-09-07
基金项目:国家自然科学基金资助项目(42205185); 中国气象局青年创新团队资助项目(CMA2024QN15)
通信作者:马盼.mapan@cuit.edu.cn