AO Yangqian,WANG Yongqian,SUN Zhen,et al.NDVI Time Series Reconstruction of Winter Wheat based on Crop Reference Curve Method[J].Journal of Chengdu University of Information Technology,2025,40(02):238-244.[doi:10.16836/j.cnki.jcuit.2025.02.016]
基于作物参考曲线法的冬小麦NDVI时间序列重建
- Title:
- NDVI Time Series Reconstruction of Winter Wheat based on Crop Reference Curve Method
- 文章编号:
- 2096-1618(2025)02-0238-07
- Keywords:
- crop reference curve; winter wheat; NDVI time series; Sentinel-2; MODIS; Hebei Province
- 分类号:
- S162.5+4
- 文献标志码:
- A
- 摘要:
- 近年来,多源传感器融合的遥感技术发展快速,弥补了单一数据源存在的时间分辨率或空间分辨率难以达到研究要求的情况。然而这种方法受到融合影像质量的影响较大,在部分区域难以完成对研究区作物高时空分辨率的归一化植被指数(NDVI)的计算。本文采用从冬小麦分布图中识别MODIS冬小麦像元并提取多组NDVI时间序列作为作物参考曲线,并利用Sentinel-2数据对作物参考曲线进行挑选以及调整从而实现重建的方法,但该研究方法受到作物参考曲线的影响。因此在重建的基础上进一步测试作物参考曲线算法在使用不同年份参考曲线的情况下的重建精度。精度评价结果表明,在作物快速生长的时期重建NDVI的相对误差(RE)在10%左右,在缓慢生长的NDVI高值时期重建的RE则在4%~7%,且生长期间中重建NDVI的均方根误差(RMSE)均低于0.17。因此,重建后的每日30 m分辨率NDVI图具有较好的质量可以满足复杂农业场景下提供高质量NDVI数据的需求。
- Abstract:
- In recent years, the remote sensing technology of multi-source sensor fusion has been developed rapidly, which makes up for the fact that the temporal resolution or spatial resolution of a single data source is difficult to meet the research requirements. However, this method is greatly affected by the quality of fused images, so it is difficult to complete the calculation of the normalized vegetation index(NDVI)with high spatiotemporal resolution of crops in the study area in some areas. In this paper, we used the method of identifying MODIS winter wheat pixels from the distribution map of winter wheat, extracting multiple sets of NDVI time series as crop reference curves, and using Sentinel-2 data to select and adjust the crop reference curves to achieve reconstruction, but the research method was affected by the crop reference curves. Therefore, on the basis of the reconstruction, the reconstruction accuracy of the crop reference curve algorithm was further tested when the reference curves of different years were used. The results showed that the relative error(RE)of reconstructed NDVI was about 10% during the period of rapid crop growth, and about 4% to 7% during the period of high value of NDVI of slow growth, and the root mean square error(RMSE)of reconstructed NDVI during the growth period was less than 0.17.Therefore, the reconstructed daily 30 m resolution NDVI map has good quality and can meet the needs of providing high-quality NDVI data in complex agricultural scenarios.
参考文献/References:
[1] 贾永红,李德仁,孙家柄.多源遥感影像数据融合[J].遥感技术与应用,2000(1):41-44.
[2] 张良培,沈焕锋.遥感数据融合的进展与前瞻[J].遥感学报,2016,20(5):1050-1061.
[3] 孟祥超,孙伟伟,任凯,等.基于多分辨率分析的GF-5和GF-1遥感影像空—谱融合[J].遥感学报,2020,24(4):379-387.
[4] Laetitia L,B D A L,M B D J,et al.Hyperspectral Pansharpening:A Review[J].IEEE Geoscience and Remote Sensing Magazine,2015,3(3).
[5] 刘帝.基于时空谱分析的黄淮海平原北部土壤肥力胁迫甄别与监测研究[D].廊坊:北华航天工业学院,2021.
[6] 杨可明,张涛,王立博,等.高光谱影像的谐波分析融合算法研究[J].中国矿业大学学报,2014,43(3):547-553.
[7] 张涛,刘军,杨可明,等.结合Gram-Schmidt变换的高光谱影像谐波分析融合算法[J].测绘学报,2015,44(9):1042-1047.
[8] Tian.Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing[J].Freshwater Biology,2010,55(8).
[9] Gao F M,Jeff Schwaller,Matt Hall,et al.on the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J].IEEETransactions on Geoscience and Remote sensing,2006,44(8).
[10] 顾娟,李新,黄春林.NDVI时间序列数据集重建方法述评[J].遥感技术与应用,2006(4):391-395.
[11] 李儒,张霞,刘波,等.遥感时间序列数据滤波重建算法发展综述[J].遥感学报,2009,13(2):335-341.
[12] Jonsson.Seasonality extraction by function fitting to time-series of satellite sensor data[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(8).
[13] Beck.Improved monitoring of vegetation dynamics at very high latitudes:A new method using Modis Ndvi[J].Remote Sensing of Environment,2006,100(3).
[14] Jonsson.TIMESAT-a program for analyzing time-series of satellite sensor data[J].COMPUTERS & Geosciences,2004,30(8).
[15] Julien.Comparison of cloud-reconstruction methods for time series of composite NDVI data[J].Remote Sensing of Environment,2010,114(3).
[16] Chen.A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky-Golay filter[J].Isprs Journal of Photogrammetry and Remote Sensing,2021,180.
[17] 边金虎,李爱农,宋孟强,等.MODIS植被指数时间序列Savitzky-Golay滤波算法重构[J].遥感学报,2010,14(4):725-741.
备注/Memo
收稿日期:2023-10-17
基金项目:国家重点研发计划资助项目(2022YFD2001102)
通信作者:孙亮.E-mail:sunliang@caas.cn