XU Yizhou,LI Guoping,ZHANG Xiaoyu,et al.Diagnostic Analysis of Mesoscale Convective System in Southern Jiangsu under the Influence of Typhoon“In-fa”(No.2106)[J].Journal of Chengdu University of Information Technology,2025,40(03):329-338.[doi:10.16836/j.cnki.jcuit.2025.03.013]
2106号台风“烟花”影响下苏南地区中尺度对流系统的诊断分析
- Title:
- Diagnostic Analysis of Mesoscale Convective System in Southern Jiangsu under the Influence of Typhoon“In-fa”(No.2106)
- 文章编号:
- 2096-1618(2025)03-0329-10
- Keywords:
- typhoon periphery; mesoscale convective system; diagnostic analysis; helicity; moist potential vorticity
- 分类号:
- P458.2
- 文献标志码:
- A
- 摘要:
- 为揭示登陆台风外围中尺度对流系统的发展机制和结构特征,利用ERA5再分析资料、雷达、卫星、自动站等多源监测数据对2021年7月28日午后发生在台风“烟花”外围环流内苏南一次强对流过程的环流背景、物理量特征进行分析。研究得出:中尺度对流系统在“烟花”外围偏西北气流下发展,于苏西南形成地面辐合线。发展全过程均呈低层辐合,高层辐散,强盛阶段上升运动达200 hPa。絮状回波合并与强对流始发相关联,云团膨胀机制与强对流迅速发展对应,带状回波纵向加强对应中尺度对流云团点状膨胀。稳定度指数对本次过程有较好前兆指示。降水发生前,z-螺旋度与湿z-螺旋度负值中心已出现于MCS始发区,降水与负螺旋度对应,负值中心位于降水中心西北,湿z-螺旋度较z-螺旋度更能反映MCS消亡阶段特征,螺旋度中心位于800~900 hPa。系统始发区湿正压项呈负值,强盛阶段湿位涡正压项MPV1负值中心与降水中心重合。湿位涡斜压项MPV2随系统发展正值逐渐增强,降水发生在MPV2正值中心和正负MPV2交界处。近地面负MPV1与正MPV2的配置,对MCS降水产生与加强有较好指示。
- Abstract:
- To investigate the development mechanism and structural characteristics of the mesoscale convective system outside the landing typhoon, a comprehensive analysis was conducted using multiple data sources, including ERA5 reanalysis data, radar, satellite, and automatic stations. The focus was on examining the circulation background and physical features of a strong convective event that occurred in southern Jiangsu on July 28, 2021, during the outer circulation of Typhoon “In-fa”. The findings reveal that the MCS developed under northwest airflow outside the typhoon’s influence, resulting in the formation of a surface convergence line in southwest Jiangsu. Throughout its development, this system exhibited lower-level convergence and higher-level divergence. The intense upward motion extended up to 200 hPa. The combination of flocculent echoes is associated with the initiation of MCS, and cloud mass expansion corresponds to rapid convection development. Additionally, The longitudinal intensification of the band radar echo corresponds to the point expansion of the mesoscale convective cloud cluster. The stability index serves as an effective precursor for this process. Prior to precipitation occurrence, the negative centers of z-helicity and wet z-helicity appeared in the initiation area of MCS, which coincided with subsequent precipitation centers located northwestwardly from them. Wet z-helicity better reflects characteristics during the MCS extinction stage compared to z-helicity. Helicity centers are situated between 800-900 hPa.Before precipitation, MPV1 in the initial region of MCS was negative, and the negative MPV1 center coincided with the precipitation center during the system’s robust phase. The MPV2 incrementally increases alongside the development of MCS, resulting in precipitation at the positive MPV2 center and the conjunction of positive and negative MPV2. The configuration of negative MPV1 and positive MPV2 near the ground provides a promising indication for the generation and intensification of MCS precipitation.
参考文献/References:
[1] 黄荣辉,皇甫静亮,武亮,等.关于西北太平洋季风槽年际和年代际变异及其对热带气旋生成影响和机理的研究[J].热带气象学报,2016,32(6):767-785.
[2] 池艳珍,何芬,唐振飞.2016年登陆和影响福建台风成因分析及预测[J].气象,2017,43(10):1287-1295.
[3] 何敏,宋文玲.厄尔尼诺和反厄尔尼诺事件与西北太平洋台风活动[J].热带气象学报,1999,15(1):17-25.
[4] 楼茂园.9012台风倒槽结构与暴雨中尺度系统[J].气象,1993,19(3):7-12.
[5] 陈小芸,黄姚钦,炎利军.台风倒槽局地性强降雨分析[J].气象科技,2004,32(2):71-75.
[6] 赵宇,杨晓霞,孙兴池.影响山东的台风暴雨天气的湿位涡诊断分析[J].气象,2004,30(4):15-19.
[7] 李英,陈联寿,雷小途.高空槽对9711号台风变性加强影响的数值研究[J].气象学报,2006,64(5):552-563.
[8] 张秋庆,丁一汇.登陆台风变性为温带气旋过程的物理机制初步分析[J].海洋学报,1990,12(6):704-713.
[9] 项素清,韩兴,方鹤鸣,等.2106号台风“烟花”的路径及降水特点分析[J].海洋预报,2023,40(3):75-84.
[10] 章梦臻,刘敏,张纯,等.2106号台风“烟花”路径移速等异常特征分析[J].中文科技期刊数据库(全文版)自然科学,2022,14(9):167-173.
[11] 沈晓玲,李锋.台风“烟花”浙江极端降水成因分析[J].海洋预报,2022,39(5):37-47.
[12] 蓝秋萍,饶灶鑫,程思."米雷"外围大范围强对流天气成因分析[J].农业灾害研究,2016,6(6):8-12.
[13] 李彩玲,炎利军,张广彦,等.台风外围偏北气流下两次强对流天气的对比分析[J].广东气象,2015,37(5):5-9.
[14] 曾欣欣,丛黎强.9012号台风打转的成因分析[J].气象,1991,17(8):29-32.
[15] 刘跃红,司福意.地面辐合线与强对流天气落区[J].河南气象,2003,26(3):16-17.
[16] 董杏燕.2007强对流天气对比分析[C].中国气象学会会.2008.
[17] 戴晓燕,过仲阳,吴健平,等.1998年夏季青藏高原上东移MCS环境场特征的聚类分析[J].高原气象,2007,26(4):701-707.
[18] 王令,康玉霞,焦热光,等.北京地区强对流天气雷达回波特征[J].气象,2004,30(7):31-35.
[19] 林毅,刘爱鸣,林新彬.台风中尺度对流云团与中尺度暴雨相互关系的综合分析[J].热带气象学报,2002,18(4):393-398.
[20] 叶爱芬,伍志方,肖伟军,等.对流有效位能在强对流预报中的应用研究[J].热带气象学报,2006,22(5):484-490.
[21] 何金海,郭品文,银燕.大气科学概论[M].北京:气象出版社,2012.
[22] 孟妙志.K指数在暴雨分析预报中的应用[J].气象,2003,29(8):1-2.
[23] 黄小培,韦革宁.百色地区“94·6”大暴雨前期沙氏指数(SI)的演变特征及风的垂直变化特点[J].广西气象,1994,15(3):168-169.
[24] 李耀东,刘健文,高守亭.螺旋度在对流天气预报中的应用研究进展[J].气象科技,2005,33(1):7-11.
[25] 王璐思,顾洪国,吴沛锋.一次高原低涡切变东移引发的持续性特大暴雨过程分析[J].高原山地气象研究,2015,35(3):39-44.
[26] 李慧芹,李江南,于艳,等.一次海南秋季台风暴雨的特征和成因分析[J].热带气象学报,2018,34(1):133-144.
[27] 蒙伟光,王安宇,李江南,等.华南暴雨中尺度对流系统的形成及湿位涡分析[J].大气科学,2004,28(3):330-341.
备注/Memo
收稿日期:2023-10-23
基金项目:国家自然科学基金资助项目(42175002); 四川省中央引导地方科技发展资助项目(2024ZYD0175)
通信作者:李国平.E-mail:liguoping@cuit.edu.cn