HUANG Diwei,BAI Aijuan,WANG Zhao,et al.Cloud Top Height Characteristics of Heavy Precipitation in the Warm Season in Southern Shaanxi based on FY-4A Satellite and Weather Radar[J].Journal of Chengdu University of Information Technology,2025,40(03):352-358.[doi:10.16836/j.cnki.jcuit.2025.03.016]
基于FY-4A卫星和天气雷达的陕南暖季强降水的云顶高度特征
- Title:
- Cloud Top Height Characteristics of Heavy Precipitation in the Warm Season in Southern Shaanxi based on FY-4A Satellite and Weather Radar
- 文章编号:
- 2096-1618(2025)03-0352-07
- Keywords:
- FY- 4A satellite; intense precipitation; cloud top height; radar echo top height; Southern Shaanxi Province
- 分类号:
- P414.4
- 文献标志码:
- A
- 摘要:
- 为了解FY- 4A卫星云顶高度(cloud top height,CTH)产品对陕南暖季降水云的反映状况,以陕南地区2020年暖季(5-10月)降水过程为例,对比分析FY- 4A卫星CTH产品与汉中天气雷达回波顶高(echo top height,ET)产品对该地区降水云的探测资料。结果表明:(1)在暖季21次降水过程中,卫星产品的云顶高度揭示了陕南地区降水云的空间变化,尤其在大巴山峡口附近,CTH值显著偏高的区域与陕南强降水的多发区相吻合。(2)以2020年暖季一次强降水过程为例,云顶高度探测表明卫星CTH的高值区通常与雷达ET的高值区相对应,说明卫星能够揭示陕南山区降水云体的时空变化,但在雷达ET高值区卫星CTH存在以填充值代替的现象,说明复杂地形区CTH填充值可能是潜在强降水区。(3)对比两种探测在降水云体发展中差异,结果显示在降水云初生和消亡阶段,两者绝对差值小于2 km的格点数与总格点数的占比都超过50%,说明CTH产品能有效捕捉降水云的初生和消亡变化。在降水云成熟阶段,两者平均差值超过4 km,卫星探测云体不确定性增加,较难反映降水云体特征。
- Abstract:
- To understand the reflection of the FY- 4A satellite Cloud Top Height(CTH)product on precipitation clouds in the warm season in southern Shaanxi, this study compares and analyzes the detection data of FY-4A satellite CTH product and Hanzhong weather radar Echo Top Height(ET)product for precipitation clouds in the region during the warm season of 2020(May to October). The results show that:(1)Among the 21 precipitation events in the warm season, the satellite product reveals the spatial variation of precipitation clouds in southern Shaanxi, especially near the Daba Mountain Pass, where the areas with significantly higher CTH values coincide with the frequent occurrence of heavy precipitation in southern Shaanxi.(2)Taking a strong precipitation event in the warm season of 2020 as an example, the detection of cloud top height indicates that the high-value areas of satellite CTH generally correspond to the high-value areas of radar ET, indicating that the satellite can reveal the spatiotemporal variation of precipitation cloud systems in the mountainous areas of southern Shaanxi. However, in the high-value areas of radar ET, the satellite CTH exhibits a phenomenon of being replaced by fill values, indicating that fill values of CTH in complex terrain areas may represent potential areas of heavy precipitation.(3)Comparing the differences between the two detection methods in the development of precipitation cloud systems, the results show that during the initial and dissipation stages of precipitation clouds, the proportion of grid points with an absolute difference of less than 2 km between the two methods exceeds 50% of the total grid points, indicating that the CTH product can effectively capture the changes in the initial and dissipation stages of precipitation clouds. However, during the mature stage of precipitation clouds, the average difference between the two methods exceeds 4 km, indicating increased uncertainty in satellite cloud detection and greater difficulty in reflecting the characteristics of precipitation cloud systems.
参考文献/References:
[1] 胡晓娜.陕南秦巴山区小流域暴雨洪水成因特征及计算方法探讨[J].地下水,2019,41(1):2.
[2] Snodgrass E R,L Di,Girolamo R M,et al.Precipitation Characteristics of Trade Wind Clouds during RICO Derived from Radar,Satellite,and Aircraft Measurements.[J].International Journal Of Climatology,2009,48:464-483.
[3] Adler R F,Mack R A.Tunderstorm cloud height-rainfall rate relations for use with satellite rainfall estimation techniques[J].Theoretical and Applied Climatology,1984,23:280-296.
[4] Simpson J,McIntire T,Jin Z,et al.Improved Cloud Top Height Retrieval under Arbitrary Viewing and Illumination Conditions Using AVHRR Data[J].Remote Sensing,2000,72:95-110.
[5] Castro E,Ishida T,Takahashi Y,et al.Determination of Cloud-top Height through Three-dimensional Cloud Reconstruction using DIWATA-1 Data[J].Scientific Reports.2020,10:7570.
[6] Marais WJ,Holz R,Hu Y,et al.Approach to simultaneously denoise and invert back scatter and extinction from photon-limited atmospheric lidar observations[J].2016,55(29):8316-8334.
[7] 周毓荃,陈英英,李娟,等.用FY-2C/D卫星等综合观测资料反演云物理特性产品及检验[J].气象,2008,34(12):27-35+130-131.
[8] Min M,C Q Wu,C Li,et al.Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites:Fengyun-4 series.[J].Journal of Meteorological Research,2017,31(4):708-719.
[9] 王诗圣,向嘉敏,祝善友,等.利用MODIS数据对FY-4A-AGRI传感器蓝光通道交叉辐射定标[J].遥感信息,2020,35(6):115-121.
[10] 宇路,傅云飞.基于CALIOP资料研究不同相态云边界的几何特征[C]中国气象学会.第33届中国气象学会年会 S12 大气物理学与大气环境,2016,:328.
[11] 毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究[J].高原气象,2006,25(3):485-494.
[12] 马鹏辉,杨燕军,张剑.基于卫星云图的对流初生预测技术综述[J].气象与减灾研究,2014,37(1):1-5.
[13] 张培昌,戴铁丕,杜秉玉,等.雷达气象学[M].北京:气象出版社,1992,:91-92.
[14] 张艳品,章文星,吕达仁,等.卫星(IASI探测仪)观测云顶高与地基云雷达观测的对比验证[J].大气科学,2014,38(5):874-884.
[15] 周非非,周毓荃,王俊,等.FY-2卫星反演的云顶高度与多普勒雷达回波顶高的关系初探[J].气象,2010,36(4):43-50.
[16] 俞小鼎,郑永光.中国当代强对流天气研究与业务进展[J].气象学报,2020,78(3).
相似文献/References:
[1]赵衍斌,肖天贵.四川地区强降水的时空分布特征[J].成都信息工程大学学报,2016,(01):94.
ZHAO Yan-bin,XIAO Tian-gui.The Temporal and Spatial Distribution of Heavy Rainfall in Sichuan[J].Journal of Chengdu University of Information Technology,2016,(03):94.
[2]杨若欧,张永莉,杨康权.2020年8月中旬成都强降水过程的天气学分析[J].成都信息工程大学学报,2022,37(03):325.[doi:10.16836/j.cnki.jcuit.2022.03.013]
YANG Ruoou,ZHANG Yongli,YANG kangquan.Synoptic Analysis of the Process of Heavy Precipitation in Chengdu in Mid-August 2020[J].Journal of Chengdu University of Information Technology,2022,37(03):325.[doi:10.16836/j.cnki.jcuit.2022.03.013]
备注/Memo
收稿日期:2023-11-06
基金项目:国家自然科学基金重点资助项目(U2242202); 陕西省秦岭与黄土高原重点实验室基金资助项目(2022G-10); 陕西省科技厅自然科学研究计划资助项目(2023-JC-YB-279)
通信作者:白爱娟.E-mail:baiaj@cuit.edu.cn