ZHAO Runhua,YUAN Zhen,CHEN Zhihang.Analysis of Two Strong Fogs in Winter at Chengdu Tianfu Airport based on Himawari Satellite Images[J].Journal of Chengdu University of Information Technology,2025,40(03):403-407.[doi:10.16836/j.cnki.jcuit.2025.03.023]
基于葵花卫星图像的成都天府机场冬季两次强浓雾对比分析
- Title:
- Analysis of Two Strong Fogs in Winter at Chengdu Tianfu Airport based on Himawari Satellite Images
- 文章编号:
- 2096-1618(2025)03-0403-05
- Keywords:
- strong fog; Tianfu Airport; advection; Himawari satellite; RGB composite image
- 分类号:
- P426.4
- 文献标志码:
- A
- 摘要:
- 为分析成都天府机场强浓雾过程的天气特征,利用日本葵花气象卫星8/9号的多通道红外亮温和实况观测数据,采用夜间微物理RGB合成方案,对2022年1月9日和2023年12月30-31日两次天府机场强浓雾天气过程进行对比分析。结果表明:夜间RGB合成图上能够清晰区分两次强浓雾过程的生成和发展机制。2022年1月9日的强浓雾天气,图像上呈现出与地形一致的点状、网状的淡黄色分布,雾区原地生成和发展,属于辐射雾天气; 2023年12月30-31日的强浓雾在图像上呈现出均匀分布的黄色区域,该区域开始时间早、覆盖面积大,具有明显的东北向西南移动扩散的特征,这次强浓雾天气是由低云/雾的平流作用导致的。
- Abstract:
- To analyze the weather characteristics of the strong fog process at Chengdu Tianfu Airport, using multi-channel infrared brightness temperature from Japan’s Himawari Meteorological Satellite 8/9 and real-time observation data from the airport. A nighttime microphysical RGB synthesis scheme was used to compare and discuss the two strong and dense fog processes. The results show that the fog processes had different generation and development mechanisms, and can be clearly distinguished on the nighttime RGB composite image. The strong and dense fog weather on January 9, 2022, presented in the image is consistent with the terrain, with a dotted and network light yellow distribution. The fog area is generated and developed in situ, belonging to radiation fog weather; The strong and dense fog from December 30 to 31, 2023 presents a uniformly distributed yellow area in the image and has obvious characteristics of northeast-to-southwest movement and diffusion. This strong fog weather is caused by the advection of low clouds/fog.
参考文献/References:
[1] 中国气象局.GB/T 27964-2011.雾的预报等级[S].北京:中国标准出版社,2011:16-17.
[2] 王庆,李季,樊明月,等.济南一次平流辐射物的微物理结构及演变特征[J].气象,2019,45(9):1299-1309.
[3] 方春刚,郭学良.华北一次浓度过程爆发性增强的微物理特征[J].应用气象学报,2019,30(6):700-709.
[4] 石春娥,李耀孙,张浩,等.安徽省不同等级雾和重度霾时空分布特征及地面气象条件比较[J].气象学报,2021,79(5):828-840.
[5] Eyre J R,Brownscombe J L,Allam R J.Detection of fog at night using Advanced Very High Resolution Radiometer(AVHRR)imagery[J].Meteorological Magazine,1984,113(1346):266-271.
[6] Lee T F,Turk F J,Richardson K.Stratus and fog products using GOES-8-9 3.9 μm data[J].Weather Forecasting,1997,12(3):664-677.
[7] Yoo J M,Jeong M J,Hur Y M,et al.Improved fog detection from satellite in the presence of Clouds[J].Asia-Pacific J Atmos Sci,2010,46(1):29-40.
[8] Gultepe I,Pagowski M,Reid J.A satellite-based fog detection scheme using screen air temperature[J].Weather Forecasting,2007,22(3):444-456.
[9] Bendix J.A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas[J].Atmospheric Research,2002,64:3-18.
[10] 居为民,孙涵,张忠义.卫星遥感资料在沪宁高速公里大雾监测中的初步应用[J].遥感信息,1997,4(3):25-27.
[11] 李亚春,孙涵,李湘阁.用GMS-5气象卫星资料遥感监测白天雾的研究[J].南京气象学院学报,2001,24(3):121-129.
[12] 李军,韩志军,陈洪滨.静止气象卫星遥感探测华北平原秋季大雾研究[J].遥感技术与应用,2011,26(2):186-195.
[13] 吴晓京,李三妹,廖密.基于20年卫星遥感资料的黄海渤海海雾分布季节特征分析[J].海洋学报,2015,37(1):63-72.
[14] 吴晓京,朱江,王曦.风云三号微波观测资料的海雾同化模拟[J].大气科学,2017,41(3):421-436.
[15] 张春桂,林炳青.基于FY-2E卫星数据的福建沿海海雾遥感监测[J].国土资源遥感,2018,30(1):7-13.
[16] 邓玉娇,田永杰,王捷纯.静止气象卫星资料在白天海雾动态监测中的应用[J].地理科学,2016,36(10):1581-1587.
[17] 王宏斌,张志薇, 刘端阳,等.基于葵花8号新一代静止气象卫星的夜间雾识别[J].高原气象,2018,37(6):1749-1764.
[18] 王清平,朱雯娜,王勇,等.FY-4A资料在乌鲁木齐机场浓雾天气监测中的初步应用[J],气象,2021,47(5):627-637.
[19] 林建,杨贵名,毛冬艳.我国大雾的时空分布特征及其发生的环流形势[J].气候与环境研究.2008,13(2):171-181.
[20] 李慧晶,余芳,李洪梅,等.四川不同等级雾的时空分布及其生消时间[J].高原山地气象研究,2021,41(2):88-93.
[21] Da C. Preliminary assessment of the advanced Himawari imager(AHI)measurement onboard Himawari-8 geostationary satellite[J].Remote Sens Lett,2015,6(8):637-646.
备注/Memo
收稿日期:2024-03-05