HAO Yitian,TAN Xue,ZENG Yuting,et al.Exploring Millimeter-Wave Radar for Airport Fog Detection[J].Journal of Chengdu University of Information Technology,2025,40(04):459-465.[doi:10.16836/j.cnki.jcuit.2025.04.008]
民航机场毫米波雷达测雾研究
- Title:
- Exploring Millimeter-Wave Radar for Airport Fog Detection
- 文章编号:
- 2096-1618(2025)04-0459-07
- Keywords:
- Shuangliu airport; Changshui airport; millimeter-wave radar; droplet spectrometer; fog detection; feasibility
- 分类号:
- TP959.4
- 文献标志码:
- A
- 摘要:
- 为明确毫米波雷达在雾的探测方面的能力和作用,利用已有的不同类型雾滴谱模型,估算雷达回波反射率因子范围,其理论值介于-46.31~-3.79 dBZ。利用2019年10-11月宁夏的雾滴谱仪观测数据,估算的回波反射率因子平均值为-19.05 dBZ,最小值为-36.19 dBZ,最大值为-4.73 dBZ。基于上述数据,提出毫米波雷达测雾所需的最小可探测强度等关键性能指标。通过分析714KaDP型毫米波雷达的理论参数,结合昆明和成都两地架设的同型号雷达对雾过程的观测结果,表明该型雷达在适当配置工作参数时,能够有效用于雾的探测。
- Abstract:
- Millimeter-wave radar has the advantages of strong penetration and high spatiotemporal resolution.While its application to cloud measurement has been extensively researched and tested,its potential for fog measurement has been less explored.This paper investigates the droplet size distribution models of different types of fog and estimates echo intensity values ranging from -46.31 dBZ to -3.79 dBZ.Based on the observation data from a fog droplet spectrometer in Ningxia from October 31st to November 2nd,2019,the estimated echo intensity has an average of -19.05 dBZ,with a minimum of -36.19 dBZ and a maximum of -4.73 dBZ.This paper proposes the minimum detectable intensity required for millimeter-wave radar fog measurement and other indicators.Furthermore,it analyzes the theoretical and measured parameters of the 714 KaDP millimeter-wave radar.Results show that this type of radar can be used for fog measurement using the same type of millimeter-wave radar installed in Kunming and Chengdu to observe fog processes when appropriate operating parameters are selected.
参考文献/References:
[1] 苏九言.低能见度天气对飞行的影响及应对措施[J]. 中国民航飞行学院学报,2023,34(3):61-63.
[2] 陈志豪,来小芳.浦东机场平流雾平流低云的预报与监测预警[C]. 第七届长三角气象科技论坛论文集.上海:华东空管局气象中心,2010:11.
[3] 刘峰,林智,钟加杰.广州白云机场一次低云低能见度天气过程的成因[J]. 广东气象,2007,29(3):21-23.
[4] 傅毅.2018-05-01低云低能见度天气分析[J]. 科技与创新.2018,18:83-84.
[5] 任满亮.大连机场云雾综合探测系统在一次持续性雾霾天气过程中的应用性分析[J]. 中国民航飞行学院学报.2018,29(5):28-30.
[6] Lijun Hu,Hao Yang.Monitoring and analysis of sea fog in an offshore waterway using lidar[J]. Optical Engineering.2021,60(6).
[7] Tu X,Yao R,Hu L,et al.Observation and simulation study on the macro-microphysical characteristics of a coastal fog offshore Zhejiang Province of China[J]. Atmospheric research.2023,282.
[8] Jianxin He,Xinyue Ren,Hao Wang,et al.Analysis of the microphysical structure and evolution characteristics of a typical sea fog weather event in the eastern sea of china[J]. Remote Sensing.2022,14(21):5604.
[9] 马强,陶法,茆佳佳,等.激光雷达和毫米波雷达探测海雾回波的对比分析[J]. 气象水文海洋仪器,2022,39(2):9-11.
[10] 陈小传.民航气象观测中低云观测技巧研究[J]. 科技创新导报,2020,17(11):2-3.
[11] Galati G,Dalmasso I.Fog detection using airport radar[C]. 2006 International radar symposium,Krakow:IEEE,2006:209-212.
[12] 刘端阳.南京地区冬季雾的微物理特征[D]. 南京:南京信息工程大学,2008:31-33.
[13] 杨中秋,许绍祖,耿骠.舟山地区春季海雾的形成和微物理结构[J]. 海洋学报,1989,11(4):431-438.
[14] 张曦,牛生杰,魏锦成,等.厦门春季海雾天气分类及典型个例宏微观结构分析[J]. 气象科学,2016:36(1):121-127.
[15] 张舒婷,牛生杰,赵丽娟.一次南海海雾微物理结构个例分析[J]. 大气科学,2013,37(3):552-562.
备注/Memo
收稿日期:2024-01-04
