HU Xuntao,MENG Xiancai,LIU Shaoqing,et al.A Multi-Scale Pure Convolutional Neural Network based on Feature Engineering for Traffic Anomaly Prediction[J].Journal of Chengdu University of Information Technology,2025,40(05):589-593.[doi:10.16836/j.cnki.jcuit.2025.05.003]
基于特征工程的多尺度纯卷积神经网络的流量异常预测方法
- Title:
- A Multi-Scale Pure Convolutional Neural Network based on Feature Engineering for Traffic Anomaly Prediction
- 文章编号:
- 2096-1618(2025)05-0589-05
- Keywords:
- intrusion detection; deep learning; cybersecurity; sample less prediction; feature engineering
- 分类号:
- TP393.08
- 文献标志码:
- A
- 摘要:
- 入侵检测作为当前网络安全研究方向的焦点,其检测的准确性对于安全防护具有重要意义。针对传统机器学习与深度学习在预测准确率、模型稳定性以及多维数据中关键特征提取方面存在的问题,提出一种基于特征工程的多尺度纯卷积神经网络预测方法(FM-ConvNeXt)。在数据的处理上运用提出的特征工程方法,将遗传算法和主成分分析算法有效结合,提取关键特征,采用少数类过采样技术平衡数据样本,避免因样本不平衡导致的模型偏向性问题。在模型上以纯卷积神经网络(ConvNeXt)为主干模型,结合分流自注意力机制对特征进行高效学习,并添加全局响应归一化层用于减少模型内部协变量转移、增强模型稳定性。该方法在公开数据集CICIDS2018上预测的准确率为96.66%,F1-Score为96.63%,结果表明模型具有优异的预测能力,对于提高预测网络攻击的准确率和避免造成隐私数据泄露具有重要作用。
- Abstract:
- Intrusion detection,as a focus of current network security research,is of great significance to security protection in terms of its detection accuracy.Aiming at the problems of traditional machine learning and deep learning in prediction accuracy,model stability,and key feature extraction in multi-dimensional data.In this paper,a multi-scale pure convolutional neural network prediction method(FM-ConvNeXt)based on feature engineering is proposed.The proposed feature engineering method is applied in the processing of data,which effectively combines the genetic algorithm and principal component analysis algorithm to extract key features,and the minority class oversampling technique is used to balance the data samples to avoid the problem of model bias caused by sample imbalance.A pure convolutional neural network(ConvNeXt)is used as the backbone model in the model,combined with the shunt self-attention mechanism for efficient feature learning,and a global response normalization layer is added to reduce covariate transfer within the model and enhance model stability.The method predicts 96.66% accuracy and 96.63% F1-Score on the public dataset CICIDS-2018,and the results show that the model has excellent prediction ability,which is important for improving the accuracy of predicting cyberattacks and avoiding causing privacy data leakage.
参考文献/References:
[1] Zhang H,Huang L,Wu C Q,et al.An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusiondetection in imbalanced dataset[J]. Computer Networks,2020,177:107315.
[2] Kushwah J S,Kumar A,Patel S,et al.Comparative study of regressor and classifier with decision tree using modern tools[J]. Materials Today:Proceedings,2022,56:3571-3576.
[3] Huang S,Cai N,Pacheco P P,et al.Applications of support vector machine(SVM)learning in cancer genomics[J]. Cancer genomics & proteomics,2018,15(1):41-51.
[4] Zhou J,Huang S,Qiu Y.Optimization of random forest through the use of MVO,GWO and MFO in evaluating the stability of underground entry-typeexcavations[J]. Tunnelling and Underground Space Technology,2022,124:104494.
[5] Liu L,Wang P,Lin J,et al.Intrusion detection of imbalanced network traffic based on machine learning and deep learning[J]. Ieee Access,2020,9:7550-7563.
[6] Kunang Y N,Nurmaini S,Stiawan D,et al.Attack classification of an intrusion detection system using deep learning and hyperparameter optimization[J]. Journal of Information Security and Applications,2021,58:102804.
[7] Zhang Z,Zhang Y,Guo D,et al.SecFedNIDS:Robust defense for poisoning attack against federated learning-based network intrusion detection system[J]. Future Generation Computer Systems,2022,134:154-169.
[8] De Souza C A,Westphall C B,Machado R B.Two-step ensemble approach for intrusion detection and identification in IoT and fog computing environments[J]. Computers & Electrical Engineering,2022,98:107694.
[9] Hai T H,Nam L H.A practical comparison of deep learning methods for network intrusion detection[C]. 2021 International Conference on Electrical,Communication,and Computer Engineering(ICECCE).IEEE,2021:1-6.
[10] Chen Y,Ashizawa N,Yeo C K,et al.Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection[J]. Knowledge-Based Systems,2021,224:107086.
[11] Liu Z,Mao H,Wu C Y,et al.A convnet for the 2020s[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.2022:11976-11986.
[12] Ren S,Zhou D,He S,et al.Shunted self-attention via multi-scale token aggregation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10853-10862.
[13] Theckedath D,Sedamkar R R.Detecting affect states using VGG16,ResNet50 and SE-ResNet50 networks[J]. SN Computer Science,2020,1:1-7.
[14] Liu Z,Lin Y,Cao Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]. Proceedings of the IEEE/CVF international conference on computer vision.2021:10012-10022.
[15] Kim C,Batra R,Chen L,et al.Polymer design using genetic algorithm and machine learning[J]. Computational Materials Science,2021,186:110067.
[16] Waskle S,Parashar L,Singh U.Intrusion detection system using PCA with random forest approach[C]. 2020 International Conference onElectronics and Sustainable Communication Systems(ICESC).IEEE,2020:803-808.
[17] Shahbandayeva L,Mammadzada U,Manafova I,et al.Network Intrusion Detection using Supervised and Unsupervised Machine Learning[C]. 2022 IEEE 16th International Conference on Application of Information and Communication Technologies(AICT).IEEE,2022:1-7.
[18] Xu H,Sun L,Fan G,et al.A Hierarchical Intrusion Detection Model Combining Multiple Deep Learning Models With Attention Mechanism[C]. IEEE Access,2023.
[19] Lin P,Ye K,Xu C Z.Dynamic network anomaly detection system by using deep learning techniques[C]. Cloud Computing-CLOUD 2019:12th International Conference,Held as Part of the Services Conference Federation,SCF 2019,San Diego,CA,USA,June 25-30,2019,Proceedings 12.Springer International Publishing,2019:161-176.
相似文献/References:
[1]卢 丽,许源平,卢 军,等.基于社会力异常检测改进算法的人群行为模型[J].成都信息工程大学学报,2018,(01):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
LU Li,XU Yuan-ping,LU Jun,et al.A Crowd Behavior Model based on an ImprovedSocial Force Anomaly Detection Algorithm[J].Journal of Chengdu University of Information Technology,2018,(05):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
[2]胡 婕,陶宏才.基于深度学习的领域问答系统的设计与实现[J].成都信息工程大学学报,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
HU Jie,TAO Hongcai.Design and Implementation of Domain Question Answering System based on Deep Learning[J].Journal of Chengdu University of Information Technology,2019,(05):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]冉元波,孙 敏,高梦清,等.双偏振天气雷达水凝物识别研究[J].成都信息工程大学学报,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
RAN Yuan-bo,SUN Min,GAO Meng-qing,et al.Study on Hydrometeor Identification based on Deep Learning[J].Journal of Chengdu University of Information Technology,2017,(05):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
[5]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(05):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[6]谭诗雨,杨 玲,师春香,等.复杂背景下银行卡号识别方法研究[J].成都信息工程大学学报,2021,36(03):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
TAN Shiyu,YANG Ling,SHI Chunxiang,et al.Bank Card Number Recognition System under the Complex Background based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(05):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
[7]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(05):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
[8]李 静,鲜 林,王海江.基于YOLOv3的船只检测算法研究[J].成都信息工程大学学报,2023,38(01):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
LI Jing,XIAN Lin,WANG Haijiang.Research on Ship Detection Algorithm based on YOLOv3[J].Journal of Chengdu University of Information Technology,2023,38(05):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
[9]毛 波,杨 昊,周世杰,等.基于CMA-REPS格点预报数据的深度学习风速订正方法[J].成都信息工程大学学报,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
MAO Bo,YANG Hao,ZHOU Shijie,et al.A Deep Learning Method for Wind Speed Grid Point Forecasting Data Correction based on CMA-REPS[J].Journal of Chengdu University of Information Technology,2023,38(05):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
[10]任不凡,黄小燕,吴思东,等.基于语义信息的三维点云全景分割方法研究[J].成都信息工程大学学报,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
REN Bufan,HUANG Xiaoyan,WU Sidong,et al.Research on Panoptic Segmentation of 3D Point Clouds based on Semantic Information[J].Journal of Chengdu University of Information Technology,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
[11]詹鸿辉,程仲汉.基于卷积神经网络的异常流量鉴别方法[J].成都信息工程大学学报,2023,38(06):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]
ZHAN Honghui,CHENG Zhonghan.Identification Method of Abnormal Traffic based on Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2023,38(05):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]
备注/Memo
收稿日期:2024-03-25
基金项目:国家自然科学基金资助项目(12105135); 合肥综合性国家科学中心能源研究院资助项目(21KZS208); 高校协同创新资助项目(GXXT-2022-003)
通信作者:刘少清.E-mail:liushaoqing@ie.ah.cn
