REN Zhihan,CHEN Ning,DENG Ye,et al.Analysis of Characteristics of Continuous Seasonal Droughts Probability based on Copula Function in Chengdu[J].Journal of Chengdu University of Information Technology,2025,40(05):683-690.[doi:10.16836/j.cnki.jcuit.2025.05.016]
基于Copula函数的成都市季节连旱概率分布特征
- Title:
- Analysis of Characteristics of Continuous Seasonal Droughts Probability based on Copula Function in Chengdu
- 文章编号:
- 2096-1618(2025)05-0683-08
- Keywords:
- continuous seasonal drought; probability distribution characteristics; Copula function; Chengdu city
- 分类号:
- P429
- 文献标志码:
- A
- 摘要:
- 为得到成都市季节连旱概率分布特征,利用成都市14个国家站1960-2022年逐日降水数据,选择干旱指数降水距平百分率(PA),通过对SciPy库概率分布函数的优选,确定成都市14个国家站4个季节PA序列的最优边缘概率分布函数。进而根据RMSE、AIC和BIC最小值选定14个国家站的最优Copula联合概率分布函数,构建成都市季节连旱Copula联合概率分布模型。成都市14个国家站4个PA序列的最优边缘概率分布函数均通过了显著性水平α=0.05的K-S检验,对应Copula联合概率分布函数均能很好地表征成都市两两季节间PA序列的联合概率分布特征,理论累积概率和实测累积概率线性拟合决定系数R2值为0.9697~0.9974。研究结果表明:成都市14个区市县春夏连旱、夏秋连旱、秋冬连旱和冬春连旱同现重现期的空间分布总体呈现西高东低的特征,相比于春夏连旱和夏秋连旱,秋冬连旱和冬春连旱的发生概率更大,其中又以轻旱与轻旱的联合概率最高。
- Abstract:
- To draw the probabilistic characteristics of continuous seasonal drought in Chengdu,we use the daily precipitation data of 14 national stations in Chengdu from 1960 to 2022,combining the percentages of precipitation anomaly(PA),to determine the optimal marginal probability distributions of the seasonal series of PA of 14 national stations in Chengdu based on the optimization of probability distributions belonging to SciPy package,and the root-mean-square-error(RMSE),Akaike Information Criterion(AIC),and Bayesian Information Criterion(BIC)of three kinds of Copula functions were calculated,respectively,to construct the optimization of Copula joint probability distribution function for 14 national stations further.The optimal marginal probability distributions of the seasonal series of PA of 14 national stations in Chengdu past the K-S test at a significant level of α=0.05.Responding Copula joint probability distribution function has excellent fitting effects on the joint probability distribution characteristics of the series of PA between two adjacent seasons in Chengdu,the determination coefficient R2 value of linear fitting between theoretical joint probability and observed ones are between 0.9697 and 0.9974.The results show that the spatial distribution of co-occurrence return period of continuous droughts between adjacent seasons in 14 districts in Chengdu are generally characterized by high in the west and low in the east,using the Copula joint probability distribution model; Compared with continued droughts during spring-summer and summer-autumn,Chengdu is prone to continuous droughts during autumn-winter and winter-spring,and the joint probability of light drought and light drought is the highest above all.
参考文献/References:
[1] 粟晓玲,褚江东,张特,等.西北地区地下水干旱时空演变趋势及对气象干旱的动态响应[J]. 水资源保护,2022,38(1):34-42.
[2] 王劲松,李耀辉,王润元,等.我国气象干旱研究进展评述[J]. 干旱气象,2012,30(4):497-508.
[3] 葛元凯,赵龙龙,陈劲松,等.1983-2022年西南地区气象干旱时空演变趋势及干旱事件识别[J]. 生态环境学报,2023,32(5):920-932.
[4] 谢清霞,谷晓平,万雪丽,等.西南地区干旱的变化特征及其与大气环流的关系[J]. 干旱区地理,2020,43(1):79-86.
[5] 石朋,唐汉,瞿思敏等.西南地区气象干旱向水文干旱传播的特征[J]. 水资源保护,2023,39(1):49-56.
[6] 刘银峰,徐海明,雷正翠.2006年川渝地区夏季干旱的成因分析[J]. 大气科学学报,2009,32(5):686-694.
[7] 吕俊梅,琚建华,任菊章,等.热带大气MJO活动异常对2009-2010年云南极端干旱的影响[J]. 中国科学:地球科学,2012,42(4):599-613.
[8] 杨歆雨,张容焱,潘航,等.福建省多维度气象干旱特征时空分布分析[J]. 气象,2022,48(12):1565-1576.
[9] 李雪纯,赵君,徐进超.基于降水距平百分率的安徽省近50 a干旱时空分布特征分析[J]. 中国农村水利水电,2018(9):133-136.
[10] 贺晋云,张明军,王鹏,等.近50年西南地区极端干旱气候变化特征[J]. 地理学报,2011,66(9):1179-1190.
[11] 商守卫,王银堂,崔婷婷,等.基于标准化降水指数的成都市气象干旱演变特征[J]. 水电能源科学,2022,40(12):26-29.
[12] 张冬冬,鲁帆,严登华,等.云南省干旱时空演变规律及季节连旱的概率特征分析[J]. 应用基础与工程科学学报,2014,22(4):705-717.
[13] 张静,王海功,倪长健,等.基于Copula函数的川西南地区连旱危险度分析[J]. 气象科技,2015,43(2):302-308.
[14] Mishra A K,Singh V P,Desai V R.Drought characterization:A probabilistic approach [J]. Stochastic Environment Research and Risk Assessment,2009,23(1):41-55.
[15] Song S B,Singh V P.Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data[J]. Stochastic Environmental Research and Risk Assessment,2010,24(3):425-444.
[16] 王沁,吕王勇.基于非对称阿基米德 Copula 模型的投资组合风险度量[J]. 四川师范大学学报(自然科学版),2019,42(2):260-268.
[17] 冯瑞瑞,荣艳淑,吴福婷.基于Copula函数的宜昌水文干旱特征分析[J]. 水文,2020,40(2):23-30.
[18] 许红师,练继建,宾零陵,等.台风灾害多元致灾因子联合分布研究[J]. 地理科学,2018,38(12):2118-2124.
[19] 关帅,丁波,查悉妮,等.基于Copula函数的韩江流域旱涝组合事件概率特征研究[J]. 亚热带资源与环境学报,2015,10(1):10-17.
[20] 杨志勇,袁喆,方宏阳,等.基于Copula函数的滦河流域旱涝组合事件概率特征分析[J]. 水利学报,2013,44(5):556-561.
[21] 刘洋,关帅.基于Copula函数的珠江流域旱涝组合事件概率特征研究[J]. 人民珠江,2017,38(2):12-17.
[22] 王荣江,李谢辉,周任君,等.三种气象干旱指数在四川省的适用性分析[J]. 长江流域资源与环境,2021,30(3):734-744.
[23] 曲学斌,吴昊,越昆,等.4种遥感干旱指数在内蒙古东部干旱监测中的对比研究[J]. 生态与农村环境学报,2020,36(1):81-88.
[24] GB/T20481-2017.中华人民共和国国家标准:气象干旱等级[S]. 北京:中国标准出版社,2017.
[25] Ji Z H,Liu X Q.Comparative analysis of PM2.5 pollution risk in China using three-dimensional Archimedean copula method[J]. Geomatics,Natural Hazards & Risk,2019,10(1):2368-2386.
[26] 宋松柏,蔡焕杰,金菊良,等.Copulas函数及其在水文中的应用[M]. 北京:科学出版社,2012:112-113.
[27] 宋松柏.Copula函数在水文多变量分析计算中的问题[J]. 人民黄河,2019,41(10):40-47.
[28] 武传号,黄国如,吴思远.基于Copula函数的广州市短历时暴雨与潮位组合风险分析[J]. 水力发电学报,2014,33(2):33-40.
[29] 万永静,刁秀媚,刘俊,等.基于Copula函数的暴雨潮位组合分析[J]. 河海大学学报(自然科学版),2017,45(3):211-217.
[30] 任至涵,倪长健,陈云强,等.基于Copula函数的成都夏季O3污染潜势模型[J]. 中国环境科学,2022,42(9):4009-4017.
[31] 刘萍,李帆,潘奇鑫,等.基于Copula函数的二维极端降水联合概率特征分析[J]. 水文,2023,43(1):35-40.
[32] 许怡然,鲁帆,戴雁宇,等.大清河流域气象干旱时空演化和联合概率分析[J]. 人民黄河,2021,43(3):84-89.
[33] 李宁,顾孝天,刘雪琴.沙尘暴灾害致灾因子三维联合分布与重现期探索[J]. 地球科学进展,2013,28(4):490-496.
[34] 齐冬梅,李跃清,王莺,等.基于Z指数的四川干旱时空分布特征[J]. 干旱气象,2017,35(5):734-744.
[35] 王若男,马林,王莹,等.成都地区1951-2010年降水年变化分析[J]. 安徽农学通报,2015,21(18):146-147.
[36] 谢欢,杨笔锋,张怡.成都市年降水量时空分布特征[J]. 成都信息工程大学学报,2022,37(3):356-360.
[37] 李昕翼,肖国杰,白爱娟,等.成都地区降水时空分布变化[J]. 气象科技,2011,39(4):417-422.
[38] 吴瑶.西南地区持续性气象干旱事件次季节尺度前兆影响信号特征的研究[D]. 成都:成都信息工程学院,2014.
备注/Memo
收稿日期:2024-02-28
基金项目:国家重点研发计划资助项目(2023YFC3709301)
通信作者:倪长健.E-mail:ncj1970@163.com
